import os from pathlib import Path from tqdm import tqdm from faster_whisper import WhisperModel # Get the current file's directory try: script_dir = Path(__file__).parent.parent except NameError: script_dir = Path().absolute() project_root = script_dir podcast_dir = os.path.join(project_root, 'import_data', 'data', 'Podcast', 'audio') output_dir = os.path.join(project_root, 'import_data', 'data', 'Podcast', 'transcripts') # Create output directory if it doesn't exist os.makedirs(output_dir, exist_ok=True) # Load Faster-Whisper model model = WhisperModel("small", device="cpu", compute_type="int8") def transcribe_audio(audio_path): l_segments, _ = model.transcribe(audio_path, language="fr", task="transcribe") return list(l_segments) # Convert generator to list def create_srt(l_segments, output_path): with open(output_path, 'w', encoding='utf-8') as f: for i, segment in enumerate(l_segments, 1): start_time = format_time(segment.start) end_time = format_time(segment.end) text = segment.text.strip() f.write(f"{i}\n{start_time} --> {end_time}\n{text}\n\n") def format_time(seconds): hours = int(seconds // 3600) minutes = int((seconds % 3600) // 60) seconds = int(seconds % 60) milliseconds = int((seconds % 1) * 1000) return f"{hours:02d}:{minutes:02d}:{seconds:02d},{milliseconds:03d}" # Process all MP3 files for filename in tqdm(os.listdir(podcast_dir)): if filename.endswith(".mp3"): mp3_path = os.path.join(podcast_dir, filename) srt_path = os.path.join(output_dir, filename.replace(".mp3", ".srt")) print(f"Transcribing {filename}...") segments = transcribe_audio(mp3_path) create_srt(segments, srt_path) print(f"Transcription saved to {srt_path}") print("All podcasts have been transcribed.")