libere-tes-chaine-de-mots/import_data/51_importation_podcast.py
2024-10-03 00:18:10 -04:00

52 lines
No EOL
1.8 KiB
Python

import os
from pathlib import Path
from tqdm import tqdm
from faster_whisper import WhisperModel
# Get the current file's directory
try:
script_dir = Path(__file__).parent.parent
except NameError:
script_dir = Path().absolute()
project_root = script_dir
podcast_dir = os.path.join(project_root, 'import_data', 'data', 'Podcast', 'audio')
output_dir = os.path.join(project_root, 'import_data', 'data', 'Podcast', 'transcripts')
# Create output directory if it doesn't exist
os.makedirs(output_dir, exist_ok=True)
# Load Faster-Whisper model
model = WhisperModel("small", device="cpu", compute_type="int8")
def transcribe_audio(audio_path):
l_segments, _ = model.transcribe(audio_path, language="fr", task="transcribe")
return list(l_segments) # Convert generator to list
def create_srt(l_segments, output_path):
with open(output_path, 'w', encoding='utf-8') as f:
for i, segment in enumerate(l_segments, 1):
start_time = format_time(segment.start)
end_time = format_time(segment.end)
text = segment.text.strip()
f.write(f"{i}\n{start_time} --> {end_time}\n{text}\n\n")
def format_time(seconds):
hours = int(seconds // 3600)
minutes = int((seconds % 3600) // 60)
seconds = int(seconds % 60)
milliseconds = int((seconds % 1) * 1000)
return f"{hours:02d}:{minutes:02d}:{seconds:02d},{milliseconds:03d}"
# Process all MP3 files
for filename in tqdm(os.listdir(podcast_dir)):
if filename.endswith(".mp3"):
mp3_path = os.path.join(podcast_dir, filename)
srt_path = os.path.join(output_dir, filename.replace(".mp3", ".srt"))
print(f"Transcribing {filename}...")
segments = transcribe_audio(mp3_path)
create_srt(segments, srt_path)
print(f"Transcription saved to {srt_path}")
print("All podcasts have been transcribed.")