27 lines
1.1 KiB
R
27 lines
1.1 KiB
R
|
# Pearson's Chi-Squared test based on the characteristic function
|
||
|
#
|
||
|
# Author: François Pelletier
|
||
|
###############################################################################
|
||
|
|
||
|
#' Pearson's Chi-Squared test based on the characteristic function
|
||
|
#' @param DATA.hist histogram object of the data
|
||
|
#' @param char.fun Characteristic function
|
||
|
#' @param ... Characteristic function arguments
|
||
|
#' @param alpha tolerance level
|
||
|
#'
|
||
|
#' @return A list containing the chi-square statistic,
|
||
|
#' degree of freedom, hypothesis reject boolean and p.value
|
||
|
#' @author François Pelletier
|
||
|
chisquare.test <- function(DATA.hist,char.fun,...,alpha=0.05)
|
||
|
{
|
||
|
# Compute expected values for each histogram breaks using the characteristic function
|
||
|
expected <- diff(cftocdf(classes <- DATA.hist$breaks,char.fun,...)*
|
||
|
sum(observed <- DATA.hist$counts))
|
||
|
# Compute the test statistic using chi-square distribution
|
||
|
p.value <- pchisq(chisquare.stat<-sum((observed-expected)^2/expected),
|
||
|
df<-length(classes)-2,lower.tail=FALSE)
|
||
|
# Create the return list
|
||
|
list(chisquare.stat=chisquare.stat,df=df,reject=p.value<alpha,p.value=p.value)
|
||
|
}
|
||
|
|