Ajout densité, test de Wald, paramètres RN et options Epps

This commit is contained in:
franc00018 2014-03-29 12:43:49 -04:00
parent 3662a0decf
commit 16722ab0e7
12 changed files with 1935 additions and 521 deletions

View file

@ -1,4 +1,5 @@
\documentclass{report}
\documentclass[letter]{report}
\usepackage[margin=0.5in]{geometry}
\usepackage{Sweave}
\usepackage{graphicx}
\usepackage[francais]{babel}
@ -29,7 +30,6 @@ library(MASS)
library(xtable)
library(multicore)
library(moments)
library(TTR)
library(FourierStuff)
library(GeneralizedAsymmetricLaplace)
library(GMMStuff)
@ -50,6 +50,8 @@ alpha.test <- 0.05
RETURNS <- head(read.csv("abbeyn.csv",sep="\t",header=TRUE)[,1],-1)
#Taille de l'échantillon
n <- length(RETURNS)
#Nom de l'échantillon
strData <- "Buckle95"
@
\section{Test de normalité}
@ -166,7 +168,7 @@ optim7 <- optim.GMM(pt.depart,
meanf=meanQEE,variancef=varianceQEE)
pt.optim7 <- optim7$par
cov.optim7 <- mean.variance.GMM.gradient.GAL(pt.optim7,sRET) %*%
covariance.GMM(meanvariance.gmm.vector,pt.optim7,sRET,
covariance.GMM(pt.optim7,meanvariance.gmm.vector,sRET,
meanf=meanQEE,variancef=varianceQEE) %*%
t(mean.variance.GMM.gradient.GAL(pt.optim7,sRET)) / n
## GMM itératif
@ -226,19 +228,19 @@ dist3 <- cbind(pGAL(xi,pt.optim1),
\subsection{Graphiques}
<<results=tex>>=
for (i in 1:8)
{
file<-paste("dist-GAL-",i,".pdf",sep="")
pdf(file=file,paper="special",width=6,height=6)
plot.ecdf(sRET,main=paste("Fonction de répartition ",i))
lines(xi,dist1[,i],col="green")
lines(xi,dist2[,1],col="red")
lines(xi,dist3[,1],col="pink")
lines(xi,pnorm(xi),type="l",col="blue")
dev.off()
cat("\\includegraphics[height=2in,width=2in]{",
file,"}\n",sep="")
}
for (i in 1:8)
{
file<-paste(strData,"-repart-",i,".pdf",sep="")
pdf(file=file,paper="special",width=6,height=6)
plot.ecdf(sRET,main=paste("Fonction de répartition ",i))
lines(xi,dist1[,i],col="green")
lines(xi,dist2[,1],col="red")
lines(xi,dist3[,1],col="pink")
lines(xi,pnorm(xi),type="l",col="blue")
dev.off()
cat("\\includegraphics[height=4in,width=4in]{",
file,"}\n",sep="")
}
@
\subsection{Statistiques}
@ -248,29 +250,169 @@ chisquare.test1 <- function(param,DATA.hist,FUN,method)
{
chisquare.test(DATA.hist,FUN,param,method=method)
}
xtable(do.call(rbind,lapply(l.pts.estim,chisquare.test1,hist(sRET),cfGAL,"integral")),digits=6)
xtable(do.call(rbind,lapply(l.pts.estim,chisquare.test1,hist(sRET),
cfGAL,"integral")),digits=6)
@
Test du $\chi^2$, Méthode avec point de selle
<<results=tex>>=
xtable(do.call(rbind,lapply(l.pts.estim,chisquare.test1,hist(sRET),pGAL,"saddlepoint")),digits=6)
xtable(do.call(rbind,lapply(l.pts.estim,chisquare.test1,hist(sRET),
pGAL,"saddlepoint")),digits=6)
@
Statistique de Kolmogorov-Smirnov
<<results=tex>>=
ks.test1 <- function(param,x,y) ks.test(x,y,param)
xtable(do.call(rbind,mclapply(l.pts.estim,ks.test1,sRET,"pGAL")),digits=6)
ks.test1 <- function(param,x,y) ks.test(x,y,param)
xtable(do.call(rbind,mclapply(l.pts.estim,ks.test1,sRET,"pGAL")),digits=6)
@
Statistique de distance minimale
<<results=tex>>=
tvariate1 <- seq(-.1,.1,by=0.01)
xtable(do.call(rbind,mclapply(l.pts.estim,md.test,sRET,tvariate1,cfGAL,empCF)),digits=6)
tvariate1 <- seq(-.1,.1,by=0.01)
xtable(do.call(rbind,mclapply(l.pts.estim,
md.test,sRET,tvariate1,cfGAL,empCF)),digits=6)
@
\section{Fonction de densité}
Intégration de la fonction de densité approximée avec le point de selle, pour la
normaliser en fonction qui intègre à 1.
<<>>=
f_integrale_saddle <- function(param,f,lower,upper)
integrate(f,lower,upper,param)$value
norm_int_saddle <- sapply(l.pts.estim,f_integrale_saddle,
f=dsaddleapproxGAL,lower=-Inf,upper=Inf)
@
Séquence de points pour les graphiques
<<>>=
x_sRET <- seq(min(sRET)-sd(sRET),max(sRET)+sd(sRET),length.out=50)
@
Graphique de la fonction de densité
<<results=tex>>=
colors2=c("black","red","green","blue","grey")
for (i in 1:dim(pts.estim)[2])
{
file=paste(strData,"-densite-", i, ".pdf", sep="")
pdf(file=file, paper="special", width=6, height=6)
plot(density(sRET),ylim=c(0,.7),type="l",
main=paste("Densité de",strData, i),xlab=strData,
ylab="f",lwd=2,lty=1)
points(x_sRET,
dGAL(x_sRET,pts.estim[,i]),
type="b",ylim=c(0,4),col="red",pch=19,lwd=2,lty=2)
points(x_sRET,
dsaddleapproxGAL(x_sRET,pts.estim[,i])/norm_int_saddle[i],
type="b",ylim=c(0,4),col="green",pch=20,lwd=2,lty=3)
lines(x_sRET,dnorm(x_sRET),type="b",col="blue",
pch=21,lwd=2,lty=4)
points(seq(-2,4,length.out=1000)[seq(40,1000,by=40)],
cftodensity.fft(cfGAL,1000,-2,4,pts.estim[,i])$dens[seq(40,1000,by=40)],
type="b",col="grey",pch=23,lty=6)
legend(quantile(sRET,0.9),0.7, c("emp","est.GAL","pt.selle","appx.nrm","fft"),
cex=0.8, col=colors2, pch=c(NA,19:23), lty=1:6, title="Courbes")
dev.off()
cat("\\includegraphics[height=4in, width=4in]{"
,file, "}\n", sep="")
}
@
\subsection{Tests avec contraintes}
Test de Wald
<<>>=
R <- matrix(c(0,0,1,0,
0,0,0,1),ncol=4)
r <- matrix(c(0,0),ncol=1)
V <- lapply(l.pts.estim,covariance.GMM,meanvariance.gmm.vector,
sRET,meanQEE,varianceQEE)
D <- lapply(l.pts.estim,mean.variance.GMM.gradient.GAL,sRET)
xtable(mapply(Wald.Test,l.pts.estim,n,list(R),list(r),V,D),
caption="Test de Wald", digits=2)
@
\subsection{Vrais paramètres}
Comme nous avons estimé avec des données centrées et réduites, nous utilisons
une propriété de la distribution GAL qui nous permet d'obtenir les paramètres
des rendements non réduits.
<<>>=
pts.estim.ns <- apply(pts.estim,2,scaleGAL,type="mu",
mean(RETURNS),sd(RETURNS))
@
<<results=tex>>=
xtable(pts.estim.ns,
caption="Paramètres des données non centrées et réduites",
digits=4)
@
\section{Prix d'options}
\subsection{Données de base}
<<>>=
#Taux sans risque
rfrate <- .05/365
#Échéance
T <- 30
#Pas de discrétisation courbe des prix
pas <- 0.005
#Prix initial
stock0 <- 299
#Prix d'exercice dans le cours (put)
strike1 <- stock0*seq(0.98,1,pas)
#Prix d'exercice hors le cours (put)
strike2 <- stock0*seq(1+pas,1.02,pas)
#Prix d'exercice combinés
strike <- c(strike1,strike2)
#Damping parameter
alpha <- 3
@
\subsection{Paramètres neutres au risque}
<<>>=
pts.estim.ns.rn <- apply(pts.estim.ns,2,riskneutralparGAL,rfrate)
l.pts.estim.ns.rn <- as.list(data.frame(pts.estim.ns.rn))
@
<<results=tex>>=
xtable(pts.estim.ns.rn,caption="Paramètres neutres au risque",digits=4)
@
\subsection{Méthode de Epps}
<<>>=
f_putEpps <- function(param,strikeprice,char.fn,eval.time,expiry.time,rate)
putEpps(strikeprice,char.fn,eval.time,expiry.time,rate,param=param)
prix_Epps <- as.data.frame(sapply(l.pts.estim.ns.rn,f_putEpps,strike/stock0,cfLM,0,T,rfrate))
@
<<results=tex>>=
xtable(prix_Epps,caption="Prix unitaire de l'option de vente, Méthode de Epps",digits=6)
@

Binary file not shown.

View file

@ -1,4 +1,5 @@
\documentclass{report}
\documentclass[letter]{report}
\usepackage[margin=0.5in]{geometry}
\usepackage{Sweave}
\usepackage{graphicx}
\usepackage[francais]{babel}
@ -30,7 +31,6 @@
> library(xtable)
> library(multicore)
> library(moments)
> library(TTR)
> library(FourierStuff)
> library(GeneralizedAsymmetricLaplace)
> library(GMMStuff)
@ -53,6 +53,8 @@
> RETURNS <- head(read.csv("abbeyn.csv",sep="\t",header=TRUE)[,1],-1)
> #Taille de l'échantillon
> n <- length(RETURNS)
> #Nom de l'échantillon
> strData <- "Buckle95"
\end{Sinput}
\end{Schunk}
@ -255,7 +257,7 @@ $Reject
+ meanf=meanQEE,variancef=varianceQEE)
> pt.optim7 <- optim7$par
> cov.optim7 <- mean.variance.GMM.gradient.GAL(pt.optim7,sRET) %*%
+ covariance.GMM(meanvariance.gmm.vector,pt.optim7,sRET,
+ covariance.GMM(pt.optim7,meanvariance.gmm.vector,sRET,
+ meanf=meanQEE,variancef=varianceQEE) %*%
+ t(mean.variance.GMM.gradient.GAL(pt.optim7,sRET)) / n
> ## GMM itératif
@ -337,28 +339,28 @@ $Reject
\begin{Schunk}
\begin{Sinput}
> for (i in 1:8)
+ {
+ file<-paste("dist-GAL-",i,".pdf",sep="")
+ pdf(file=file,paper="special",width=6,height=6)
+ plot.ecdf(sRET,main=paste("Fonction de répartition ",i))
+ lines(xi,dist1[,i],col="green")
+ lines(xi,dist2[,1],col="red")
+ lines(xi,dist3[,1],col="pink")
+ lines(xi,pnorm(xi),type="l",col="blue")
+ dev.off()
+ cat("\\includegraphics[height=2in,width=2in]{",
+ file,"}\n",sep="")
+ }
> for (i in 1:8)
+ {
+ file<-paste(strData,"-repart-",i,".pdf",sep="")
+ pdf(file=file,paper="special",width=6,height=6)
+ plot.ecdf(sRET,main=paste("Fonction de répartition ",i))
+ lines(xi,dist1[,i],col="green")
+ lines(xi,dist2[,1],col="red")
+ lines(xi,dist3[,1],col="pink")
+ lines(xi,pnorm(xi),type="l",col="blue")
+ dev.off()
+ cat("\\includegraphics[height=4in,width=4in]{",
+ file,"}\n",sep="")
+ }
\end{Sinput}
\includegraphics[height=2in,width=2in]{dist-GAL-1.pdf}
\includegraphics[height=2in,width=2in]{dist-GAL-2.pdf}
\includegraphics[height=2in,width=2in]{dist-GAL-3.pdf}
\includegraphics[height=2in,width=2in]{dist-GAL-4.pdf}
\includegraphics[height=2in,width=2in]{dist-GAL-5.pdf}
\includegraphics[height=2in,width=2in]{dist-GAL-6.pdf}
\includegraphics[height=2in,width=2in]{dist-GAL-7.pdf}
\includegraphics[height=2in,width=2in]{dist-GAL-8.pdf}\end{Schunk}
\includegraphics[height=4in,width=4in]{Buckle95-repart-1.pdf}
\includegraphics[height=4in,width=4in]{Buckle95-repart-2.pdf}
\includegraphics[height=4in,width=4in]{Buckle95-repart-3.pdf}
\includegraphics[height=4in,width=4in]{Buckle95-repart-4.pdf}
\includegraphics[height=4in,width=4in]{Buckle95-repart-5.pdf}
\includegraphics[height=4in,width=4in]{Buckle95-repart-6.pdf}
\includegraphics[height=4in,width=4in]{Buckle95-repart-7.pdf}
\includegraphics[height=4in,width=4in]{Buckle95-repart-8.pdf}\end{Schunk}
\subsection{Statistiques}
Test du $\chi^2$, Méthode avec intégration
@ -368,10 +370,11 @@ Test du $\chi^2$, Méthode avec intégration
+ {
+ chisquare.test(DATA.hist,FUN,param,method=method)
+ }
> xtable(do.call(rbind,lapply(l.pts.estim,chisquare.test1,hist(sRET),cfGAL,"integral")),digits=6)
> xtable(do.call(rbind,lapply(l.pts.estim,chisquare.test1,hist(sRET),
+ cfGAL,"integral")),digits=6)
\end{Sinput}
% latex table generated in R 3.0.2 by xtable 1.7-1 package
% Sat Mar 15 11:38:58 2014
% latex table generated in R 3.0.3 by xtable 1.7-3 package
% Sat Mar 29 12:42:33 2014
\begin{table}[ht]
\centering
\begin{tabular}{rrrr}
@ -393,10 +396,11 @@ pt.optim1 & 5.473824 & 6.000000 & 0.484626 \\
Test du $\chi^2$, Méthode avec point de selle
\begin{Schunk}
\begin{Sinput}
> xtable(do.call(rbind,lapply(l.pts.estim,chisquare.test1,hist(sRET),pGAL,"saddlepoint")),digits=6)
> xtable(do.call(rbind,lapply(l.pts.estim,chisquare.test1,hist(sRET),
+ pGAL,"saddlepoint")),digits=6)
\end{Sinput}
% latex table generated in R 3.0.2 by xtable 1.7-1 package
% Sat Mar 15 11:38:58 2014
% latex table generated in R 3.0.3 by xtable 1.7-3 package
% Sat Mar 29 12:42:33 2014
\begin{table}[ht]
\centering
\begin{tabular}{rrrr}
@ -418,11 +422,11 @@ pt.optim1 & 9.293574 & 6.000000 & 0.157728 \\
Statistique de Kolmogorov-Smirnov
\begin{Schunk}
\begin{Sinput}
> ks.test1 <- function(param,x,y) ks.test(x,y,param)
> xtable(do.call(rbind,mclapply(l.pts.estim,ks.test1,sRET,"pGAL")),digits=6)
> ks.test1 <- function(param,x,y) ks.test(x,y,param)
> xtable(do.call(rbind,mclapply(l.pts.estim,ks.test1,sRET,"pGAL")),digits=6)
\end{Sinput}
% latex table generated in R 3.0.2 by xtable 1.7-1 package
% Sat Mar 15 11:38:58 2014
% latex table generated in R 3.0.3 by xtable 1.7-3 package
% Sat Mar 29 12:42:33 2014
\begin{table}[ht]
\centering
\begin{tabular}{rrrrrr}
@ -445,11 +449,12 @@ Statistique de distance minimale
\begin{Schunk}
\begin{Sinput}
> tvariate1 <- seq(-.1,.1,by=0.01)
> xtable(do.call(rbind,mclapply(l.pts.estim,md.test,sRET,tvariate1,cfGAL,empCF)),digits=6)
> tvariate1 <- seq(-.1,.1,by=0.01)
> xtable(do.call(rbind,mclapply(l.pts.estim,
+ md.test,sRET,tvariate1,cfGAL,empCF)),digits=6)
\end{Sinput}
% latex table generated in R 3.0.2 by xtable 1.7-1 package
% Sat Mar 15 11:38:58 2014
% latex table generated in R 3.0.3 by xtable 1.7-3 package
% Sat Mar 29 12:42:33 2014
\begin{table}[ht]
\centering
\begin{tabular}{rrrr}
@ -468,6 +473,240 @@ pt.optim1 & 0.000422 & 21.000000 & 0.000000 \\
\end{tabular}
\end{table}\end{Schunk}
\section{Fonction de densité}
Intégration de la fonction de densité approximée avec le point de selle, pour la
normaliser en fonction qui intègre à 1.
\begin{Schunk}
\begin{Sinput}
> f_integrale_saddle <- function(param,f,lower,upper)
+ integrate(f,lower,upper,param)$value
> norm_int_saddle <- sapply(l.pts.estim,f_integrale_saddle,
+ f=dsaddleapproxGAL,lower=-Inf,upper=Inf)
\end{Sinput}
\end{Schunk}
Séquence de points pour les graphiques
\begin{Schunk}
\begin{Sinput}
> x_sRET <- seq(min(sRET)-sd(sRET),max(sRET)+sd(sRET),length.out=50)
\end{Sinput}
\end{Schunk}
Graphique de la fonction de densité
\begin{Schunk}
\begin{Sinput}
> colors2=c("black","red","green","blue","grey")
> for (i in 1:dim(pts.estim)[2])
+ {
+ file=paste(strData,"-densite-", i, ".pdf", sep="")
+ pdf(file=file, paper="special", width=6, height=6)
+ plot(density(sRET),ylim=c(0,.7),type="l",
+ main=paste("Densité de",strData, i),xlab=strData,
+ ylab="f",lwd=2,lty=1)
+ points(x_sRET,
+ dGAL(x_sRET,pts.estim[,i]),
+ type="b",ylim=c(0,4),col="red",pch=19,lwd=2,lty=2)
+ points(x_sRET,
+ dsaddleapproxGAL(x_sRET,pts.estim[,i])/norm_int_saddle[i],
+ type="b",ylim=c(0,4),col="green",pch=20,lwd=2,lty=3)
+
+ lines(x_sRET,dnorm(x_sRET),type="b",col="blue",
+ pch=21,lwd=2,lty=4)
+ points(seq(-2,4,length.out=1000)[seq(40,1000,by=40)],
+ cftodensity.fft(cfGAL,1000,-2,4,pts.estim[,i])$dens[seq(40,1000,by=40)],
+ type="b",col="grey",pch=23,lty=6)
+ legend(quantile(sRET,0.9),0.7, c("emp","est.GAL","pt.selle","appx.nrm","fft"),
+ cex=0.8, col=colors2, pch=c(NA,19:23), lty=1:6, title="Courbes")
+ dev.off()
+ cat("\\includegraphics[height=4in, width=4in]{"
+ ,file, "}\n", sep="")
+ }
\end{Sinput}
\includegraphics[height=4in, width=4in]{Buckle95-densite-1.pdf}
\includegraphics[height=4in, width=4in]{Buckle95-densite-2.pdf}
\includegraphics[height=4in, width=4in]{Buckle95-densite-3.pdf}
\includegraphics[height=4in, width=4in]{Buckle95-densite-4.pdf}
\includegraphics[height=4in, width=4in]{Buckle95-densite-5.pdf}
\includegraphics[height=4in, width=4in]{Buckle95-densite-6.pdf}
\includegraphics[height=4in, width=4in]{Buckle95-densite-7.pdf}
\includegraphics[height=4in, width=4in]{Buckle95-densite-8.pdf}\end{Schunk}
\subsection{Tests avec contraintes}
Test de Wald
\begin{Schunk}
\begin{Sinput}
> R <- matrix(c(0,0,1,0,
+ 0,0,0,1),ncol=4)
> r <- matrix(c(0,0),ncol=1)
> V <- lapply(l.pts.estim,covariance.GMM,meanvariance.gmm.vector,
+ sRET,meanQEE,varianceQEE)
> D <- lapply(l.pts.estim,mean.variance.GMM.gradient.GAL,sRET)
> xtable(mapply(Wald.Test,l.pts.estim,n,list(R),list(r),V,D),
+ caption="Test de Wald", digits=2)
\end{Sinput}
\begin{Soutput}
% latex table generated in R 3.0.3 by xtable 1.7-3 package
% Sat Mar 29 12:42:33 2014
\begin{table}[ht]
\centering
\begin{tabular}{rrrrrrrrr}
\hline
& pt.optim1 & pt.optim2 & pt.optim3 & pt.optim4 & pt.optim5 & pt.optim6 & pt.optim7 & pt.optim8 \\
\hline
wald.stat & 1861.21 & 1796.75 & 1690.26 & 1865.01 & 1814.81 & 1690.62 & 2111.08 & 2175.45 \\
p.value & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
reject & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline
\end{tabular}
\caption{Test de Wald}
\end{table}
\end{Soutput}
\end{Schunk}
\subsection{Vrais paramètres}
Comme nous avons estimé avec des données centrées et réduites, nous utilisons
une propriété de la distribution GAL qui nous permet d'obtenir les paramètres
des rendements non réduits.
\begin{Schunk}
\begin{Sinput}
> pts.estim.ns <- apply(pts.estim,2,scaleGAL,type="mu",
+ mean(RETURNS),sd(RETURNS))
\end{Sinput}
\end{Schunk}
\begin{Schunk}
\begin{Sinput}
> xtable(pts.estim.ns,
+ caption="Paramètres des données non centrées et réduites",
+ digits=4)
\end{Sinput}
% latex table generated in R 3.0.3 by xtable 1.7-3 package
% Sat Mar 29 12:42:33 2014
\begin{table}[ht]
\centering
\begin{tabular}{rrrrrrrrr}
\hline
& pt.optim1 & pt.optim2 & pt.optim3 & pt.optim4 & pt.optim5 & pt.optim6 & pt.optim7 & pt.optim8 \\
\hline
1 & -0.0092 & -0.0080 & -0.0090 & -0.0092 & -0.0079 & -0.0091 & -0.0081 & -0.0081 \\
2 & 0.0078 & 0.0083 & 0.0079 & 0.0078 & 0.0083 & 0.0079 & 0.0081 & 0.0081 \\
3 & 0.0033 & 0.0031 & 0.0033 & 0.0033 & 0.0031 & 0.0033 & 0.0030 & 0.0030 \\
4 & 2.0214 & 1.8783 & 1.9603 & 2.0220 & 1.8804 & 1.9616 & 1.9660 & 1.9727 \\
\hline
\end{tabular}
\caption{Paramètres des données non centrées et réduites}
\end{table}\end{Schunk}
\section{Prix d'options}
\subsection{Données de base}
\begin{Schunk}
\begin{Sinput}
> #Taux sans risque
> rfrate <- .05/365
> #Échéance
> T <- 30
> #Pas de discrétisation courbe des prix
> pas <- 0.005
> #Prix initial
> stock0 <- 299
> #Prix d'exercice dans le cours (put)
> strike1 <- stock0*seq(0.98,1,pas)
> #Prix d'exercice hors le cours (put)
> strike2 <- stock0*seq(1+pas,1.02,pas)
> #Prix d'exercice combinés
> strike <- c(strike1,strike2)
> #Damping parameter
> alpha <- 3
\end{Sinput}
\end{Schunk}
\subsection{Paramètres neutres au risque}
\begin{Schunk}
\begin{Sinput}
> pts.estim.ns.rn <- apply(pts.estim.ns,2,riskneutralparGAL,rfrate)
> l.pts.estim.ns.rn <- as.list(data.frame(pts.estim.ns.rn))
\end{Sinput}
\end{Schunk}
\begin{Schunk}
\begin{Sinput}
> xtable(pts.estim.ns.rn,caption="Paramètres neutres au risque",digits=4)
\end{Sinput}
% latex table generated in R 3.0.3 by xtable 1.7-3 package
% Sat Mar 29 12:42:33 2014
\begin{table}[ht]
\centering
\begin{tabular}{rrrrrrrrr}
\hline
& pt.optim1 & pt.optim2 & pt.optim3 & pt.optim4 & pt.optim5 & pt.optim6 & pt.optim7 & pt.optim8 \\
\hline
1 & -0.0066 & -0.0057 & -0.0065 & -0.0066 & -0.0057 & -0.0065 & -0.0058 & -0.0058 \\
2 & 0.0078 & 0.0083 & 0.0079 & 0.0078 & 0.0083 & 0.0079 & 0.0081 & 0.0081 \\
3 & 0.0033 & 0.0031 & 0.0033 & 0.0033 & 0.0031 & 0.0033 & 0.0030 & 0.0030 \\
4 & 2.0214 & 1.8783 & 1.9603 & 2.0220 & 1.8804 & 1.9616 & 1.9660 & 1.9727 \\
\hline
\end{tabular}
\caption{Paramètres neutres au risque}
\end{table}\end{Schunk}
\subsection{Méthode de Epps}
\begin{Schunk}
\begin{Sinput}
> f_putEpps <- function(param,strikeprice,char.fn,eval.time,expiry.time,rate)
+ putEpps(strikeprice,char.fn,eval.time,expiry.time,rate,param=param)
> prix_Epps <- as.data.frame(sapply(l.pts.estim.ns.rn,f_putEpps,strike/stock0,cfLM,0,T,rfrate))
\end{Sinput}
\end{Schunk}
\begin{Schunk}
\begin{Sinput}
> xtable(prix_Epps,caption="Prix unitaire de l'option de vente, Méthode de Epps",digits=6)
\end{Sinput}
% latex table generated in R 3.0.3 by xtable 1.7-3 package
% Sat Mar 29 12:42:33 2014
\begin{table}[ht]
\centering
\begin{tabular}{rrrrrrrrr}
\hline
& pt.optim1 & pt.optim2 & pt.optim3 & pt.optim4 & pt.optim5 & pt.optim6 & pt.optim7 & pt.optim8 \\
\hline
1 & 0.015415 & 0.015785 & 0.015431 & 0.015417 & 0.015794 & 0.015427 & 0.015792 & 0.015819 \\
2 & 0.017360 & 0.017737 & 0.017377 & 0.017362 & 0.017746 & 0.017372 & 0.017742 & 0.017770 \\
3 & 0.019456 & 0.019838 & 0.019474 & 0.019458 & 0.019847 & 0.019469 & 0.019843 & 0.019871 \\
4 & 0.021705 & 0.022090 & 0.021724 & 0.021707 & 0.022099 & 0.021719 & 0.022093 & 0.022122 \\
5 & 0.024107 & 0.024492 & 0.024126 & 0.024109 & 0.024501 & 0.024121 & 0.024495 & 0.024523 \\
6 & 0.026661 & 0.027044 & 0.026681 & 0.026663 & 0.027053 & 0.026676 & 0.027046 & 0.027074 \\
7 & 0.029365 & 0.029745 & 0.029385 & 0.029367 & 0.029753 & 0.029381 & 0.029745 & 0.029773 \\
8 & 0.032217 & 0.032591 & 0.032238 & 0.032219 & 0.032600 & 0.032233 & 0.032591 & 0.032617 \\
9 & 0.035214 & 0.035580 & 0.035235 & 0.035216 & 0.035589 & 0.035231 & 0.035579 & 0.035605 \\
\hline
\end{tabular}
\caption{Prix unitaire de l'option de vente, Méthode de Epps}
\end{table}\end{Schunk}

1955
Rplots.pdf

File diff suppressed because it is too large Load diff

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.