Ajout densité, test de Wald, paramètres RN et options Epps
This commit is contained in:
parent
3662a0decf
commit
16722ab0e7
12 changed files with 1935 additions and 521 deletions
186
GAL-Buckle95.Rnw
186
GAL-Buckle95.Rnw
|
@ -1,4 +1,5 @@
|
|||
\documentclass{report}
|
||||
\documentclass[letter]{report}
|
||||
\usepackage[margin=0.5in]{geometry}
|
||||
\usepackage{Sweave}
|
||||
\usepackage{graphicx}
|
||||
\usepackage[francais]{babel}
|
||||
|
@ -29,7 +30,6 @@ library(MASS)
|
|||
library(xtable)
|
||||
library(multicore)
|
||||
library(moments)
|
||||
library(TTR)
|
||||
library(FourierStuff)
|
||||
library(GeneralizedAsymmetricLaplace)
|
||||
library(GMMStuff)
|
||||
|
@ -50,6 +50,8 @@ alpha.test <- 0.05
|
|||
RETURNS <- head(read.csv("abbeyn.csv",sep="\t",header=TRUE)[,1],-1)
|
||||
#Taille de l'échantillon
|
||||
n <- length(RETURNS)
|
||||
#Nom de l'échantillon
|
||||
strData <- "Buckle95"
|
||||
@
|
||||
|
||||
\section{Test de normalité}
|
||||
|
@ -166,7 +168,7 @@ optim7 <- optim.GMM(pt.depart,
|
|||
meanf=meanQEE,variancef=varianceQEE)
|
||||
pt.optim7 <- optim7$par
|
||||
cov.optim7 <- mean.variance.GMM.gradient.GAL(pt.optim7,sRET) %*%
|
||||
covariance.GMM(meanvariance.gmm.vector,pt.optim7,sRET,
|
||||
covariance.GMM(pt.optim7,meanvariance.gmm.vector,sRET,
|
||||
meanf=meanQEE,variancef=varianceQEE) %*%
|
||||
t(mean.variance.GMM.gradient.GAL(pt.optim7,sRET)) / n
|
||||
## GMM itératif
|
||||
|
@ -226,19 +228,19 @@ dist3 <- cbind(pGAL(xi,pt.optim1),
|
|||
\subsection{Graphiques}
|
||||
|
||||
<<results=tex>>=
|
||||
for (i in 1:8)
|
||||
{
|
||||
file<-paste("dist-GAL-",i,".pdf",sep="")
|
||||
pdf(file=file,paper="special",width=6,height=6)
|
||||
plot.ecdf(sRET,main=paste("Fonction de répartition ",i))
|
||||
lines(xi,dist1[,i],col="green")
|
||||
lines(xi,dist2[,1],col="red")
|
||||
lines(xi,dist3[,1],col="pink")
|
||||
lines(xi,pnorm(xi),type="l",col="blue")
|
||||
dev.off()
|
||||
cat("\\includegraphics[height=2in,width=2in]{",
|
||||
file,"}\n",sep="")
|
||||
}
|
||||
for (i in 1:8)
|
||||
{
|
||||
file<-paste(strData,"-repart-",i,".pdf",sep="")
|
||||
pdf(file=file,paper="special",width=6,height=6)
|
||||
plot.ecdf(sRET,main=paste("Fonction de répartition ",i))
|
||||
lines(xi,dist1[,i],col="green")
|
||||
lines(xi,dist2[,1],col="red")
|
||||
lines(xi,dist3[,1],col="pink")
|
||||
lines(xi,pnorm(xi),type="l",col="blue")
|
||||
dev.off()
|
||||
cat("\\includegraphics[height=4in,width=4in]{",
|
||||
file,"}\n",sep="")
|
||||
}
|
||||
@
|
||||
|
||||
\subsection{Statistiques}
|
||||
|
@ -248,29 +250,169 @@ chisquare.test1 <- function(param,DATA.hist,FUN,method)
|
|||
{
|
||||
chisquare.test(DATA.hist,FUN,param,method=method)
|
||||
}
|
||||
xtable(do.call(rbind,lapply(l.pts.estim,chisquare.test1,hist(sRET),cfGAL,"integral")),digits=6)
|
||||
xtable(do.call(rbind,lapply(l.pts.estim,chisquare.test1,hist(sRET),
|
||||
cfGAL,"integral")),digits=6)
|
||||
@
|
||||
|
||||
Test du $\chi^2$, Méthode avec point de selle
|
||||
<<results=tex>>=
|
||||
xtable(do.call(rbind,lapply(l.pts.estim,chisquare.test1,hist(sRET),pGAL,"saddlepoint")),digits=6)
|
||||
xtable(do.call(rbind,lapply(l.pts.estim,chisquare.test1,hist(sRET),
|
||||
pGAL,"saddlepoint")),digits=6)
|
||||
@
|
||||
|
||||
Statistique de Kolmogorov-Smirnov
|
||||
<<results=tex>>=
|
||||
ks.test1 <- function(param,x,y) ks.test(x,y,param)
|
||||
xtable(do.call(rbind,mclapply(l.pts.estim,ks.test1,sRET,"pGAL")),digits=6)
|
||||
ks.test1 <- function(param,x,y) ks.test(x,y,param)
|
||||
xtable(do.call(rbind,mclapply(l.pts.estim,ks.test1,sRET,"pGAL")),digits=6)
|
||||
@
|
||||
|
||||
Statistique de distance minimale
|
||||
|
||||
<<results=tex>>=
|
||||
tvariate1 <- seq(-.1,.1,by=0.01)
|
||||
xtable(do.call(rbind,mclapply(l.pts.estim,md.test,sRET,tvariate1,cfGAL,empCF)),digits=6)
|
||||
tvariate1 <- seq(-.1,.1,by=0.01)
|
||||
xtable(do.call(rbind,mclapply(l.pts.estim,
|
||||
md.test,sRET,tvariate1,cfGAL,empCF)),digits=6)
|
||||
@
|
||||
|
||||
\section{Fonction de densité}
|
||||
|
||||
Intégration de la fonction de densité approximée avec le point de selle, pour la
|
||||
normaliser en fonction qui intègre à 1.
|
||||
|
||||
<<>>=
|
||||
f_integrale_saddle <- function(param,f,lower,upper)
|
||||
integrate(f,lower,upper,param)$value
|
||||
norm_int_saddle <- sapply(l.pts.estim,f_integrale_saddle,
|
||||
f=dsaddleapproxGAL,lower=-Inf,upper=Inf)
|
||||
@
|
||||
|
||||
Séquence de points pour les graphiques
|
||||
<<>>=
|
||||
x_sRET <- seq(min(sRET)-sd(sRET),max(sRET)+sd(sRET),length.out=50)
|
||||
@
|
||||
|
||||
Graphique de la fonction de densité
|
||||
|
||||
<<results=tex>>=
|
||||
colors2=c("black","red","green","blue","grey")
|
||||
for (i in 1:dim(pts.estim)[2])
|
||||
{
|
||||
file=paste(strData,"-densite-", i, ".pdf", sep="")
|
||||
pdf(file=file, paper="special", width=6, height=6)
|
||||
plot(density(sRET),ylim=c(0,.7),type="l",
|
||||
main=paste("Densité de",strData, i),xlab=strData,
|
||||
ylab="f",lwd=2,lty=1)
|
||||
points(x_sRET,
|
||||
dGAL(x_sRET,pts.estim[,i]),
|
||||
type="b",ylim=c(0,4),col="red",pch=19,lwd=2,lty=2)
|
||||
points(x_sRET,
|
||||
dsaddleapproxGAL(x_sRET,pts.estim[,i])/norm_int_saddle[i],
|
||||
type="b",ylim=c(0,4),col="green",pch=20,lwd=2,lty=3)
|
||||
|
||||
lines(x_sRET,dnorm(x_sRET),type="b",col="blue",
|
||||
pch=21,lwd=2,lty=4)
|
||||
points(seq(-2,4,length.out=1000)[seq(40,1000,by=40)],
|
||||
cftodensity.fft(cfGAL,1000,-2,4,pts.estim[,i])$dens[seq(40,1000,by=40)],
|
||||
type="b",col="grey",pch=23,lty=6)
|
||||
legend(quantile(sRET,0.9),0.7, c("emp","est.GAL","pt.selle","appx.nrm","fft"),
|
||||
cex=0.8, col=colors2, pch=c(NA,19:23), lty=1:6, title="Courbes")
|
||||
dev.off()
|
||||
cat("\\includegraphics[height=4in, width=4in]{"
|
||||
,file, "}\n", sep="")
|
||||
}
|
||||
@
|
||||
|
||||
\subsection{Tests avec contraintes}
|
||||
|
||||
Test de Wald
|
||||
|
||||
<<>>=
|
||||
R <- matrix(c(0,0,1,0,
|
||||
0,0,0,1),ncol=4)
|
||||
r <- matrix(c(0,0),ncol=1)
|
||||
V <- lapply(l.pts.estim,covariance.GMM,meanvariance.gmm.vector,
|
||||
sRET,meanQEE,varianceQEE)
|
||||
D <- lapply(l.pts.estim,mean.variance.GMM.gradient.GAL,sRET)
|
||||
|
||||
xtable(mapply(Wald.Test,l.pts.estim,n,list(R),list(r),V,D),
|
||||
caption="Test de Wald", digits=2)
|
||||
@
|
||||
|
||||
\subsection{Vrais paramètres}
|
||||
|
||||
Comme nous avons estimé avec des données centrées et réduites, nous utilisons
|
||||
une propriété de la distribution GAL qui nous permet d'obtenir les paramètres
|
||||
des rendements non réduits.
|
||||
|
||||
<<>>=
|
||||
pts.estim.ns <- apply(pts.estim,2,scaleGAL,type="mu",
|
||||
mean(RETURNS),sd(RETURNS))
|
||||
@
|
||||
|
||||
<<results=tex>>=
|
||||
xtable(pts.estim.ns,
|
||||
caption="Paramètres des données non centrées et réduites",
|
||||
digits=4)
|
||||
@
|
||||
|
||||
\section{Prix d'options}
|
||||
|
||||
\subsection{Données de base}
|
||||
|
||||
<<>>=
|
||||
#Taux sans risque
|
||||
rfrate <- .05/365
|
||||
#Échéance
|
||||
T <- 30
|
||||
#Pas de discrétisation courbe des prix
|
||||
pas <- 0.005
|
||||
#Prix initial
|
||||
stock0 <- 299
|
||||
#Prix d'exercice dans le cours (put)
|
||||
strike1 <- stock0*seq(0.98,1,pas)
|
||||
#Prix d'exercice hors le cours (put)
|
||||
strike2 <- stock0*seq(1+pas,1.02,pas)
|
||||
#Prix d'exercice combinés
|
||||
strike <- c(strike1,strike2)
|
||||
#Damping parameter
|
||||
alpha <- 3
|
||||
@
|
||||
|
||||
\subsection{Paramètres neutres au risque}
|
||||
|
||||
<<>>=
|
||||
pts.estim.ns.rn <- apply(pts.estim.ns,2,riskneutralparGAL,rfrate)
|
||||
l.pts.estim.ns.rn <- as.list(data.frame(pts.estim.ns.rn))
|
||||
@
|
||||
|
||||
<<results=tex>>=
|
||||
xtable(pts.estim.ns.rn,caption="Paramètres neutres au risque",digits=4)
|
||||
@
|
||||
|
||||
|
||||
\subsection{Méthode de Epps}
|
||||
|
||||
<<>>=
|
||||
f_putEpps <- function(param,strikeprice,char.fn,eval.time,expiry.time,rate)
|
||||
putEpps(strikeprice,char.fn,eval.time,expiry.time,rate,param=param)
|
||||
prix_Epps <- as.data.frame(sapply(l.pts.estim.ns.rn,f_putEpps,strike/stock0,cfLM,0,T,rfrate))
|
||||
@
|
||||
|
||||
<<results=tex>>=
|
||||
xtable(prix_Epps,caption="Prix unitaire de l'option de vente, Méthode de Epps",digits=6)
|
||||
@
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
BIN
GAL-Buckle95.pdf
BIN
GAL-Buckle95.pdf
Binary file not shown.
315
GAL-Buckle95.tex
315
GAL-Buckle95.tex
|
@ -1,4 +1,5 @@
|
|||
\documentclass{report}
|
||||
\documentclass[letter]{report}
|
||||
\usepackage[margin=0.5in]{geometry}
|
||||
\usepackage{Sweave}
|
||||
\usepackage{graphicx}
|
||||
\usepackage[francais]{babel}
|
||||
|
@ -30,7 +31,6 @@
|
|||
> library(xtable)
|
||||
> library(multicore)
|
||||
> library(moments)
|
||||
> library(TTR)
|
||||
> library(FourierStuff)
|
||||
> library(GeneralizedAsymmetricLaplace)
|
||||
> library(GMMStuff)
|
||||
|
@ -53,6 +53,8 @@
|
|||
> RETURNS <- head(read.csv("abbeyn.csv",sep="\t",header=TRUE)[,1],-1)
|
||||
> #Taille de l'échantillon
|
||||
> n <- length(RETURNS)
|
||||
> #Nom de l'échantillon
|
||||
> strData <- "Buckle95"
|
||||
\end{Sinput}
|
||||
\end{Schunk}
|
||||
|
||||
|
@ -255,7 +257,7 @@ $Reject
|
|||
+ meanf=meanQEE,variancef=varianceQEE)
|
||||
> pt.optim7 <- optim7$par
|
||||
> cov.optim7 <- mean.variance.GMM.gradient.GAL(pt.optim7,sRET) %*%
|
||||
+ covariance.GMM(meanvariance.gmm.vector,pt.optim7,sRET,
|
||||
+ covariance.GMM(pt.optim7,meanvariance.gmm.vector,sRET,
|
||||
+ meanf=meanQEE,variancef=varianceQEE) %*%
|
||||
+ t(mean.variance.GMM.gradient.GAL(pt.optim7,sRET)) / n
|
||||
> ## GMM itératif
|
||||
|
@ -337,28 +339,28 @@ $Reject
|
|||
|
||||
\begin{Schunk}
|
||||
\begin{Sinput}
|
||||
> for (i in 1:8)
|
||||
+ {
|
||||
+ file<-paste("dist-GAL-",i,".pdf",sep="")
|
||||
+ pdf(file=file,paper="special",width=6,height=6)
|
||||
+ plot.ecdf(sRET,main=paste("Fonction de répartition ",i))
|
||||
+ lines(xi,dist1[,i],col="green")
|
||||
+ lines(xi,dist2[,1],col="red")
|
||||
+ lines(xi,dist3[,1],col="pink")
|
||||
+ lines(xi,pnorm(xi),type="l",col="blue")
|
||||
+ dev.off()
|
||||
+ cat("\\includegraphics[height=2in,width=2in]{",
|
||||
+ file,"}\n",sep="")
|
||||
+ }
|
||||
> for (i in 1:8)
|
||||
+ {
|
||||
+ file<-paste(strData,"-repart-",i,".pdf",sep="")
|
||||
+ pdf(file=file,paper="special",width=6,height=6)
|
||||
+ plot.ecdf(sRET,main=paste("Fonction de répartition ",i))
|
||||
+ lines(xi,dist1[,i],col="green")
|
||||
+ lines(xi,dist2[,1],col="red")
|
||||
+ lines(xi,dist3[,1],col="pink")
|
||||
+ lines(xi,pnorm(xi),type="l",col="blue")
|
||||
+ dev.off()
|
||||
+ cat("\\includegraphics[height=4in,width=4in]{",
|
||||
+ file,"}\n",sep="")
|
||||
+ }
|
||||
\end{Sinput}
|
||||
\includegraphics[height=2in,width=2in]{dist-GAL-1.pdf}
|
||||
\includegraphics[height=2in,width=2in]{dist-GAL-2.pdf}
|
||||
\includegraphics[height=2in,width=2in]{dist-GAL-3.pdf}
|
||||
\includegraphics[height=2in,width=2in]{dist-GAL-4.pdf}
|
||||
\includegraphics[height=2in,width=2in]{dist-GAL-5.pdf}
|
||||
\includegraphics[height=2in,width=2in]{dist-GAL-6.pdf}
|
||||
\includegraphics[height=2in,width=2in]{dist-GAL-7.pdf}
|
||||
\includegraphics[height=2in,width=2in]{dist-GAL-8.pdf}\end{Schunk}
|
||||
\includegraphics[height=4in,width=4in]{Buckle95-repart-1.pdf}
|
||||
\includegraphics[height=4in,width=4in]{Buckle95-repart-2.pdf}
|
||||
\includegraphics[height=4in,width=4in]{Buckle95-repart-3.pdf}
|
||||
\includegraphics[height=4in,width=4in]{Buckle95-repart-4.pdf}
|
||||
\includegraphics[height=4in,width=4in]{Buckle95-repart-5.pdf}
|
||||
\includegraphics[height=4in,width=4in]{Buckle95-repart-6.pdf}
|
||||
\includegraphics[height=4in,width=4in]{Buckle95-repart-7.pdf}
|
||||
\includegraphics[height=4in,width=4in]{Buckle95-repart-8.pdf}\end{Schunk}
|
||||
|
||||
\subsection{Statistiques}
|
||||
Test du $\chi^2$, Méthode avec intégration
|
||||
|
@ -368,10 +370,11 @@ Test du $\chi^2$, Méthode avec intégration
|
|||
+ {
|
||||
+ chisquare.test(DATA.hist,FUN,param,method=method)
|
||||
+ }
|
||||
> xtable(do.call(rbind,lapply(l.pts.estim,chisquare.test1,hist(sRET),cfGAL,"integral")),digits=6)
|
||||
> xtable(do.call(rbind,lapply(l.pts.estim,chisquare.test1,hist(sRET),
|
||||
+ cfGAL,"integral")),digits=6)
|
||||
\end{Sinput}
|
||||
% latex table generated in R 3.0.2 by xtable 1.7-1 package
|
||||
% Sat Mar 15 11:38:58 2014
|
||||
% latex table generated in R 3.0.3 by xtable 1.7-3 package
|
||||
% Sat Mar 29 12:42:33 2014
|
||||
\begin{table}[ht]
|
||||
\centering
|
||||
\begin{tabular}{rrrr}
|
||||
|
@ -393,10 +396,11 @@ pt.optim1 & 5.473824 & 6.000000 & 0.484626 \\
|
|||
Test du $\chi^2$, Méthode avec point de selle
|
||||
\begin{Schunk}
|
||||
\begin{Sinput}
|
||||
> xtable(do.call(rbind,lapply(l.pts.estim,chisquare.test1,hist(sRET),pGAL,"saddlepoint")),digits=6)
|
||||
> xtable(do.call(rbind,lapply(l.pts.estim,chisquare.test1,hist(sRET),
|
||||
+ pGAL,"saddlepoint")),digits=6)
|
||||
\end{Sinput}
|
||||
% latex table generated in R 3.0.2 by xtable 1.7-1 package
|
||||
% Sat Mar 15 11:38:58 2014
|
||||
% latex table generated in R 3.0.3 by xtable 1.7-3 package
|
||||
% Sat Mar 29 12:42:33 2014
|
||||
\begin{table}[ht]
|
||||
\centering
|
||||
\begin{tabular}{rrrr}
|
||||
|
@ -418,11 +422,11 @@ pt.optim1 & 9.293574 & 6.000000 & 0.157728 \\
|
|||
Statistique de Kolmogorov-Smirnov
|
||||
\begin{Schunk}
|
||||
\begin{Sinput}
|
||||
> ks.test1 <- function(param,x,y) ks.test(x,y,param)
|
||||
> xtable(do.call(rbind,mclapply(l.pts.estim,ks.test1,sRET,"pGAL")),digits=6)
|
||||
> ks.test1 <- function(param,x,y) ks.test(x,y,param)
|
||||
> xtable(do.call(rbind,mclapply(l.pts.estim,ks.test1,sRET,"pGAL")),digits=6)
|
||||
\end{Sinput}
|
||||
% latex table generated in R 3.0.2 by xtable 1.7-1 package
|
||||
% Sat Mar 15 11:38:58 2014
|
||||
% latex table generated in R 3.0.3 by xtable 1.7-3 package
|
||||
% Sat Mar 29 12:42:33 2014
|
||||
\begin{table}[ht]
|
||||
\centering
|
||||
\begin{tabular}{rrrrrr}
|
||||
|
@ -445,11 +449,12 @@ Statistique de distance minimale
|
|||
|
||||
\begin{Schunk}
|
||||
\begin{Sinput}
|
||||
> tvariate1 <- seq(-.1,.1,by=0.01)
|
||||
> xtable(do.call(rbind,mclapply(l.pts.estim,md.test,sRET,tvariate1,cfGAL,empCF)),digits=6)
|
||||
> tvariate1 <- seq(-.1,.1,by=0.01)
|
||||
> xtable(do.call(rbind,mclapply(l.pts.estim,
|
||||
+ md.test,sRET,tvariate1,cfGAL,empCF)),digits=6)
|
||||
\end{Sinput}
|
||||
% latex table generated in R 3.0.2 by xtable 1.7-1 package
|
||||
% Sat Mar 15 11:38:58 2014
|
||||
% latex table generated in R 3.0.3 by xtable 1.7-3 package
|
||||
% Sat Mar 29 12:42:33 2014
|
||||
\begin{table}[ht]
|
||||
\centering
|
||||
\begin{tabular}{rrrr}
|
||||
|
@ -468,6 +473,240 @@ pt.optim1 & 0.000422 & 21.000000 & 0.000000 \\
|
|||
\end{tabular}
|
||||
\end{table}\end{Schunk}
|
||||
|
||||
\section{Fonction de densité}
|
||||
|
||||
Intégration de la fonction de densité approximée avec le point de selle, pour la
|
||||
normaliser en fonction qui intègre à 1.
|
||||
|
||||
\begin{Schunk}
|
||||
\begin{Sinput}
|
||||
> f_integrale_saddle <- function(param,f,lower,upper)
|
||||
+ integrate(f,lower,upper,param)$value
|
||||
> norm_int_saddle <- sapply(l.pts.estim,f_integrale_saddle,
|
||||
+ f=dsaddleapproxGAL,lower=-Inf,upper=Inf)
|
||||
\end{Sinput}
|
||||
\end{Schunk}
|
||||
|
||||
Séquence de points pour les graphiques
|
||||
\begin{Schunk}
|
||||
\begin{Sinput}
|
||||
> x_sRET <- seq(min(sRET)-sd(sRET),max(sRET)+sd(sRET),length.out=50)
|
||||
\end{Sinput}
|
||||
\end{Schunk}
|
||||
|
||||
Graphique de la fonction de densité
|
||||
|
||||
\begin{Schunk}
|
||||
\begin{Sinput}
|
||||
> colors2=c("black","red","green","blue","grey")
|
||||
> for (i in 1:dim(pts.estim)[2])
|
||||
+ {
|
||||
+ file=paste(strData,"-densite-", i, ".pdf", sep="")
|
||||
+ pdf(file=file, paper="special", width=6, height=6)
|
||||
+ plot(density(sRET),ylim=c(0,.7),type="l",
|
||||
+ main=paste("Densité de",strData, i),xlab=strData,
|
||||
+ ylab="f",lwd=2,lty=1)
|
||||
+ points(x_sRET,
|
||||
+ dGAL(x_sRET,pts.estim[,i]),
|
||||
+ type="b",ylim=c(0,4),col="red",pch=19,lwd=2,lty=2)
|
||||
+ points(x_sRET,
|
||||
+ dsaddleapproxGAL(x_sRET,pts.estim[,i])/norm_int_saddle[i],
|
||||
+ type="b",ylim=c(0,4),col="green",pch=20,lwd=2,lty=3)
|
||||
+
|
||||
+ lines(x_sRET,dnorm(x_sRET),type="b",col="blue",
|
||||
+ pch=21,lwd=2,lty=4)
|
||||
+ points(seq(-2,4,length.out=1000)[seq(40,1000,by=40)],
|
||||
+ cftodensity.fft(cfGAL,1000,-2,4,pts.estim[,i])$dens[seq(40,1000,by=40)],
|
||||
+ type="b",col="grey",pch=23,lty=6)
|
||||
+ legend(quantile(sRET,0.9),0.7, c("emp","est.GAL","pt.selle","appx.nrm","fft"),
|
||||
+ cex=0.8, col=colors2, pch=c(NA,19:23), lty=1:6, title="Courbes")
|
||||
+ dev.off()
|
||||
+ cat("\\includegraphics[height=4in, width=4in]{"
|
||||
+ ,file, "}\n", sep="")
|
||||
+ }
|
||||
\end{Sinput}
|
||||
\includegraphics[height=4in, width=4in]{Buckle95-densite-1.pdf}
|
||||
\includegraphics[height=4in, width=4in]{Buckle95-densite-2.pdf}
|
||||
\includegraphics[height=4in, width=4in]{Buckle95-densite-3.pdf}
|
||||
\includegraphics[height=4in, width=4in]{Buckle95-densite-4.pdf}
|
||||
\includegraphics[height=4in, width=4in]{Buckle95-densite-5.pdf}
|
||||
\includegraphics[height=4in, width=4in]{Buckle95-densite-6.pdf}
|
||||
\includegraphics[height=4in, width=4in]{Buckle95-densite-7.pdf}
|
||||
\includegraphics[height=4in, width=4in]{Buckle95-densite-8.pdf}\end{Schunk}
|
||||
|
||||
\subsection{Tests avec contraintes}
|
||||
|
||||
Test de Wald
|
||||
|
||||
\begin{Schunk}
|
||||
\begin{Sinput}
|
||||
> R <- matrix(c(0,0,1,0,
|
||||
+ 0,0,0,1),ncol=4)
|
||||
> r <- matrix(c(0,0),ncol=1)
|
||||
> V <- lapply(l.pts.estim,covariance.GMM,meanvariance.gmm.vector,
|
||||
+ sRET,meanQEE,varianceQEE)
|
||||
> D <- lapply(l.pts.estim,mean.variance.GMM.gradient.GAL,sRET)
|
||||
> xtable(mapply(Wald.Test,l.pts.estim,n,list(R),list(r),V,D),
|
||||
+ caption="Test de Wald", digits=2)
|
||||
\end{Sinput}
|
||||
\begin{Soutput}
|
||||
% latex table generated in R 3.0.3 by xtable 1.7-3 package
|
||||
% Sat Mar 29 12:42:33 2014
|
||||
\begin{table}[ht]
|
||||
\centering
|
||||
\begin{tabular}{rrrrrrrrr}
|
||||
\hline
|
||||
& pt.optim1 & pt.optim2 & pt.optim3 & pt.optim4 & pt.optim5 & pt.optim6 & pt.optim7 & pt.optim8 \\
|
||||
\hline
|
||||
wald.stat & 1861.21 & 1796.75 & 1690.26 & 1865.01 & 1814.81 & 1690.62 & 2111.08 & 2175.45 \\
|
||||
p.value & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
|
||||
reject & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\caption{Test de Wald}
|
||||
\end{table}
|
||||
\end{Soutput}
|
||||
\end{Schunk}
|
||||
|
||||
\subsection{Vrais paramètres}
|
||||
|
||||
Comme nous avons estimé avec des données centrées et réduites, nous utilisons
|
||||
une propriété de la distribution GAL qui nous permet d'obtenir les paramètres
|
||||
des rendements non réduits.
|
||||
|
||||
\begin{Schunk}
|
||||
\begin{Sinput}
|
||||
> pts.estim.ns <- apply(pts.estim,2,scaleGAL,type="mu",
|
||||
+ mean(RETURNS),sd(RETURNS))
|
||||
\end{Sinput}
|
||||
\end{Schunk}
|
||||
|
||||
\begin{Schunk}
|
||||
\begin{Sinput}
|
||||
> xtable(pts.estim.ns,
|
||||
+ caption="Paramètres des données non centrées et réduites",
|
||||
+ digits=4)
|
||||
\end{Sinput}
|
||||
% latex table generated in R 3.0.3 by xtable 1.7-3 package
|
||||
% Sat Mar 29 12:42:33 2014
|
||||
\begin{table}[ht]
|
||||
\centering
|
||||
\begin{tabular}{rrrrrrrrr}
|
||||
\hline
|
||||
& pt.optim1 & pt.optim2 & pt.optim3 & pt.optim4 & pt.optim5 & pt.optim6 & pt.optim7 & pt.optim8 \\
|
||||
\hline
|
||||
1 & -0.0092 & -0.0080 & -0.0090 & -0.0092 & -0.0079 & -0.0091 & -0.0081 & -0.0081 \\
|
||||
2 & 0.0078 & 0.0083 & 0.0079 & 0.0078 & 0.0083 & 0.0079 & 0.0081 & 0.0081 \\
|
||||
3 & 0.0033 & 0.0031 & 0.0033 & 0.0033 & 0.0031 & 0.0033 & 0.0030 & 0.0030 \\
|
||||
4 & 2.0214 & 1.8783 & 1.9603 & 2.0220 & 1.8804 & 1.9616 & 1.9660 & 1.9727 \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\caption{Paramètres des données non centrées et réduites}
|
||||
\end{table}\end{Schunk}
|
||||
|
||||
\section{Prix d'options}
|
||||
|
||||
\subsection{Données de base}
|
||||
|
||||
\begin{Schunk}
|
||||
\begin{Sinput}
|
||||
> #Taux sans risque
|
||||
> rfrate <- .05/365
|
||||
> #Échéance
|
||||
> T <- 30
|
||||
> #Pas de discrétisation courbe des prix
|
||||
> pas <- 0.005
|
||||
> #Prix initial
|
||||
> stock0 <- 299
|
||||
> #Prix d'exercice dans le cours (put)
|
||||
> strike1 <- stock0*seq(0.98,1,pas)
|
||||
> #Prix d'exercice hors le cours (put)
|
||||
> strike2 <- stock0*seq(1+pas,1.02,pas)
|
||||
> #Prix d'exercice combinés
|
||||
> strike <- c(strike1,strike2)
|
||||
> #Damping parameter
|
||||
> alpha <- 3
|
||||
\end{Sinput}
|
||||
\end{Schunk}
|
||||
|
||||
\subsection{Paramètres neutres au risque}
|
||||
|
||||
\begin{Schunk}
|
||||
\begin{Sinput}
|
||||
> pts.estim.ns.rn <- apply(pts.estim.ns,2,riskneutralparGAL,rfrate)
|
||||
> l.pts.estim.ns.rn <- as.list(data.frame(pts.estim.ns.rn))
|
||||
\end{Sinput}
|
||||
\end{Schunk}
|
||||
|
||||
\begin{Schunk}
|
||||
\begin{Sinput}
|
||||
> xtable(pts.estim.ns.rn,caption="Paramètres neutres au risque",digits=4)
|
||||
\end{Sinput}
|
||||
% latex table generated in R 3.0.3 by xtable 1.7-3 package
|
||||
% Sat Mar 29 12:42:33 2014
|
||||
\begin{table}[ht]
|
||||
\centering
|
||||
\begin{tabular}{rrrrrrrrr}
|
||||
\hline
|
||||
& pt.optim1 & pt.optim2 & pt.optim3 & pt.optim4 & pt.optim5 & pt.optim6 & pt.optim7 & pt.optim8 \\
|
||||
\hline
|
||||
1 & -0.0066 & -0.0057 & -0.0065 & -0.0066 & -0.0057 & -0.0065 & -0.0058 & -0.0058 \\
|
||||
2 & 0.0078 & 0.0083 & 0.0079 & 0.0078 & 0.0083 & 0.0079 & 0.0081 & 0.0081 \\
|
||||
3 & 0.0033 & 0.0031 & 0.0033 & 0.0033 & 0.0031 & 0.0033 & 0.0030 & 0.0030 \\
|
||||
4 & 2.0214 & 1.8783 & 1.9603 & 2.0220 & 1.8804 & 1.9616 & 1.9660 & 1.9727 \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\caption{Paramètres neutres au risque}
|
||||
\end{table}\end{Schunk}
|
||||
|
||||
|
||||
\subsection{Méthode de Epps}
|
||||
|
||||
\begin{Schunk}
|
||||
\begin{Sinput}
|
||||
> f_putEpps <- function(param,strikeprice,char.fn,eval.time,expiry.time,rate)
|
||||
+ putEpps(strikeprice,char.fn,eval.time,expiry.time,rate,param=param)
|
||||
> prix_Epps <- as.data.frame(sapply(l.pts.estim.ns.rn,f_putEpps,strike/stock0,cfLM,0,T,rfrate))
|
||||
\end{Sinput}
|
||||
\end{Schunk}
|
||||
|
||||
\begin{Schunk}
|
||||
\begin{Sinput}
|
||||
> xtable(prix_Epps,caption="Prix unitaire de l'option de vente, Méthode de Epps",digits=6)
|
||||
\end{Sinput}
|
||||
% latex table generated in R 3.0.3 by xtable 1.7-3 package
|
||||
% Sat Mar 29 12:42:33 2014
|
||||
\begin{table}[ht]
|
||||
\centering
|
||||
\begin{tabular}{rrrrrrrrr}
|
||||
\hline
|
||||
& pt.optim1 & pt.optim2 & pt.optim3 & pt.optim4 & pt.optim5 & pt.optim6 & pt.optim7 & pt.optim8 \\
|
||||
\hline
|
||||
1 & 0.015415 & 0.015785 & 0.015431 & 0.015417 & 0.015794 & 0.015427 & 0.015792 & 0.015819 \\
|
||||
2 & 0.017360 & 0.017737 & 0.017377 & 0.017362 & 0.017746 & 0.017372 & 0.017742 & 0.017770 \\
|
||||
3 & 0.019456 & 0.019838 & 0.019474 & 0.019458 & 0.019847 & 0.019469 & 0.019843 & 0.019871 \\
|
||||
4 & 0.021705 & 0.022090 & 0.021724 & 0.021707 & 0.022099 & 0.021719 & 0.022093 & 0.022122 \\
|
||||
5 & 0.024107 & 0.024492 & 0.024126 & 0.024109 & 0.024501 & 0.024121 & 0.024495 & 0.024523 \\
|
||||
6 & 0.026661 & 0.027044 & 0.026681 & 0.026663 & 0.027053 & 0.026676 & 0.027046 & 0.027074 \\
|
||||
7 & 0.029365 & 0.029745 & 0.029385 & 0.029367 & 0.029753 & 0.029381 & 0.029745 & 0.029773 \\
|
||||
8 & 0.032217 & 0.032591 & 0.032238 & 0.032219 & 0.032600 & 0.032233 & 0.032591 & 0.032617 \\
|
||||
9 & 0.035214 & 0.035580 & 0.035235 & 0.035216 & 0.035589 & 0.035231 & 0.035579 & 0.035605 \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\caption{Prix unitaire de l'option de vente, Méthode de Epps}
|
||||
\end{table}\end{Schunk}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
1955
Rplots.pdf
1955
Rplots.pdf
File diff suppressed because it is too large
Load diff
BIN
dist-GAL-1.pdf
BIN
dist-GAL-1.pdf
Binary file not shown.
BIN
dist-GAL-2.pdf
BIN
dist-GAL-2.pdf
Binary file not shown.
BIN
dist-GAL-3.pdf
BIN
dist-GAL-3.pdf
Binary file not shown.
BIN
dist-GAL-4.pdf
BIN
dist-GAL-4.pdf
Binary file not shown.
BIN
dist-GAL-5.pdf
BIN
dist-GAL-5.pdf
Binary file not shown.
BIN
dist-GAL-6.pdf
BIN
dist-GAL-6.pdf
Binary file not shown.
BIN
dist-GAL-7.pdf
BIN
dist-GAL-7.pdf
Binary file not shown.
BIN
dist-GAL-8.pdf
BIN
dist-GAL-8.pdf
Binary file not shown.
Loading…
Add table
Reference in a new issue