Ajout des return() et update du namespace avec roxygen
This commit is contained in:
parent
e0cbfdc2c7
commit
ca602c5f75
9 changed files with 18 additions and 19 deletions
15
NAMESPACE
15
NAMESPACE
|
@ -1,8 +1,7 @@
|
|||
export(covariance.GMM,
|
||||
delta.method.covariance.GMM,
|
||||
fourmoments.gmm.vector,
|
||||
iterative.GMM,
|
||||
mean.variance.gmm.vector,
|
||||
objective.GMM,
|
||||
optim.GMM
|
||||
)
|
||||
export(covariance.GMM)
|
||||
export(delta.method.covariance.GMM)
|
||||
export(fourmoments.gmm.vector)
|
||||
export(iterative.GMM)
|
||||
export(meanvariance.gmm.vector)
|
||||
export(objective.GMM)
|
||||
export(optim.GMM)
|
||||
|
|
|
@ -11,7 +11,7 @@
|
|||
#' @param sample Individual data sample
|
||||
#' @param ... Functions of the vector of moment conditions
|
||||
#' @return A square covariance matrix
|
||||
#'
|
||||
#' @export covariance.GMM
|
||||
#' @author François Pelletier
|
||||
covariance.GMM <- function(conditions.vector,param,sample...)
|
||||
{
|
||||
|
|
|
@ -11,7 +11,7 @@
|
|||
#' @param gradient Gradient matrix of the moment conditions
|
||||
#' @param size Sample size
|
||||
#' @return The covariance matrix of the parameters
|
||||
#'
|
||||
#' @export delta.method.covariance.GMM
|
||||
#' @author François Pelletier
|
||||
delta.method.covariance.GMM <- function(covariance,gradient,size)
|
||||
{
|
||||
|
|
|
@ -13,7 +13,7 @@
|
|||
#' @param skewnessf Skewness function
|
||||
#' @param kurtosisf Kurtosis function
|
||||
#' @return A four column matrix of differences
|
||||
#'
|
||||
#' @export fourmoments.gmm.vector
|
||||
#' @author François Pelletier
|
||||
fourmoments.gmm.vector <- function(param,sample,meanf,variancef,skewnessf,kurtosisf)
|
||||
{
|
||||
|
|
|
@ -17,7 +17,7 @@
|
|||
#' @param max.iter Maximum number of iterations
|
||||
#' @param epsilon Minimum precision level
|
||||
#' @return A list containing the optimized vector of parameter and corresponding covariance matrix
|
||||
#'
|
||||
#' @export iterative.GMM
|
||||
#' @author François Pelletier
|
||||
iterative.GMM <- function(start,conditions.vector,sample,...,
|
||||
W,R,r,max.iter=50,epsilon=1E-6)
|
||||
|
|
|
@ -12,9 +12,9 @@
|
|||
#' @param meanf Mean function
|
||||
#' @param variancef Variance function
|
||||
#' @return A two column matrix of differences
|
||||
#'
|
||||
#' @export meanvariance.gmm.vector
|
||||
#' @author François Pelletier
|
||||
mean.variance.gmm.vector <- function(param,sample,meanf,variancef)
|
||||
meanvariance.gmm.vector <- function(param,sample,meanf,variancef)
|
||||
{
|
||||
cbind(X-meanf(param),(X-meanf(param))^2 - variancef(param))
|
||||
}
|
||||
|
|
|
@ -14,7 +14,7 @@
|
|||
#' @param R Linear constraint matrix of coefficients
|
||||
#' @param r Linear constraint constants
|
||||
#' @return A scalar value
|
||||
#'
|
||||
#' @export objective.GMM
|
||||
#' @author François Pelletier
|
||||
objective.GMM <- function(param.lagrangian,conditions.vector,sample,...,
|
||||
W=diag(length(conditions.vector)),R=0,r=0)
|
||||
|
|
|
@ -8,7 +8,7 @@
|
|||
#' @param R Linear constraint matrix of coefficients
|
||||
#' @param r Linear constraint constants
|
||||
#' @return une liste contenant le résultat de l'optimisation
|
||||
#'
|
||||
#' @export optim.GMM
|
||||
#' @author François Pelletier
|
||||
optim.GMM <- function(start,conditions.vector,sample,...,W,R,r)
|
||||
{
|
||||
|
|
|
@ -1,8 +1,8 @@
|
|||
\name{mean.variance.gmm.vector}
|
||||
\alias{mean.variance.gmm.vector}
|
||||
\name{meanvariance.gmm.vector}
|
||||
\alias{meanvariance.gmm.vector}
|
||||
\title{GMM vector for mean and variance moment conditions}
|
||||
\usage{
|
||||
\method{mean}{variance.gmm.vector}(param, sample, meanf, variancef)
|
||||
meanvariance.gmm.vector(param, sample, meanf, variancef)
|
||||
}
|
||||
\arguments{
|
||||
\item{param}{Estimated parameters}
|
Loading…
Reference in a new issue