Ajout de plusieurs fonctions concernant l'approximation de la

distribution GAL
This commit is contained in:
François Pelletier 2014-02-16 16:48:40 -05:00
parent 1e20a6a809
commit 1debac4cff
24 changed files with 730 additions and 38 deletions

View file

@ -15,7 +15,7 @@
#' @return Characteristic function value at point u for given parameter vector
#'
#' @author Francois Pelletier
cfLM <- function(u,param,time,type="mu",log=FALSE,start=0)
cfLM <- function(u,param,time=1,type="mu",log=FALSE,start=0)
{
testparGAL(param,type,log)
if(log)

33
R/cgfEsscherGAL.R Normal file
View file

@ -0,0 +1,33 @@
# Cumulant generating function of the
# Esscher transform with parameter 1 of GAL distribution
#
# Author: Francois Pelletier
#
# LGPL 3.0
###############################################################################
#' Cumulant generating function of the
#' Esscher transform with parameter 1 of GAL distribution
#' @param u Transform variate
#' @param param Parameter vector
#' @param eval.time Time of the process
#' @param type Choose between "mu" or "kappa" parametrization
#' @param log Logical for log-parameters
#' @return Cumulant generating function value at point u for given parameter vector
#'
#' @author Francois Pelletier
cgfEsscherGAL <- function(u,param,eval.time=1,type="mu",log=FALSE)
{
if(type=="mu")
{
log((exp(param[1]*(u+1))/(1-(1/2)*param[2]^2*(u+1)^2-param[3]*(u+1))^param[4])^eval.time/
(exp(param[1])/(1-(1/2)*param[2]^2-param[3])^param[4])^eval.time)
}
if(type=="kappa")
{
}
}

View file

@ -1,4 +1,3 @@
# Moment generating function of GAL distribution
# Cumulant generating function of GAL distribution
#
# Author: Francois Pelletier
@ -6,40 +5,6 @@
# LGPL 3.0
###############################################################################
#' Moment generating function of GAL distribution
#' @param u Transform variate
#' @param param Parameter vector
#' @param type Choose between "mu" or "kappa" parametrization
#' @param log Logical for log-parameters
#' @return Moment generating function value at point u for given parameter vector
#'
#' @author Francois Pelletier
mgfGAL <- function(u,param,type="mu",log=FALSE)
{
testparGAL(param,type,log)
if(log)
{
if(type=="mu")
{
exp(exp(param[1])*u)*(1-(1/2)*exp(param[2])^2*u^2-exp(param[3])*u)^(-exp(param[4]))
}
if(type=="kappa")
{
exp(exp(param[1])*u)*((exp(param[2])^2*u^2)/2+(exp(param[3])*exp(param[2])*u)/sqrt(2)-(exp(param[2])*u)/(sqrt(2)*exp(param[3]))+1)^(-exp(param[4]))
}
}
else
{
if(type=="mu")
{
exp(param[1]*u)*(1-(1/2)*param[2]^2*u^2-param[3]*u)^(-param[4])
}
if(type=="kappa")
{
exp(param[1]*u)*((param[2]^2*u^2)/2+(param[3]*param[2]*u)/sqrt(2)-(param[2]*u)/(sqrt(2)*param[3])+1)^(-param[4])
}
}
}
#' Cumulant generating function of GAL distribution
#' @param u Transform variate
@ -74,4 +39,4 @@ cgfGAL <- function(u,param,type="mu",log=FALSE)
log(exp(param[1]*u)*((param[2]^2*u^2)/2+(param[3]*param[2]*u)/sqrt(2)-(param[2]*u)/(sqrt(2)*param[3])+1)^(-param[4]))
}
}
}
}

60
R/diffcgfEsscherGAL.R Normal file
View file

@ -0,0 +1,60 @@
# Differenciation of the cumulant generating fonction of the
# Esscher transform with parameter 1 of the GAL distribution
#
# Author: Francois Pelletier
#
# LGPL 3.0
###############################################################################
#' Differenciation of the cumulant generating fonction of the
#' Esscher transform with parameter 1 of the GAL distribution
#' @param u Transform variate point of evaluation
#' @param order Order of differenciation
#' @param param Parameters of the GAL distirbution
#' @param eval.time Time of the process
#' @param type Choose between "mu" or "kappa" parametrization
#' @param log Logical for log-parameters
#' @return The value of the derivative at the transform variate point of evaluation
#'
#' @author Francois Pelletier
diffcgfEsscherGAL <- function(u,order,param,eval.time=1,type="mu",log=FALSE)
{
if(type=="mu")
{
if(order==1)
{
}
if(order==2)
{
2*eval.time*param[4]*(2*param[3]^2+param[2]^4+2*param[2]^2+param[2]^4*u^2+2*param[2]^2*u*param[3]+2*param[3]*param[2]^2+2*param[2]^4*u)/(-2+param[2]^2*u^2+2*param[2]^2*u+param[2]^2+2*param[3]*u+2*param[3])^2
}
if(order==3)
{
-4*eval.time*param[4]*(6*param[2]^4+param[2]^6+3*param[2]^4*u^2*param[3]+6*param[2]^4*u*param[3]+6*param[2]^2*u*param[3]^2+4*param[3]^3+6*param[3]*param[2]^2+6*param[2]^4*u+param[2]^6*u^3+3*param[2]^6*u^2+3*param[2]^6*u+3*param[2]^4*param[3]+6*param[2]^2*param[3]^2)/(-2+param[2]^2*u^2+2*param[2]^2*u+param[2]^2+2*param[3]*u+2*param[3])^3
}
if(order==4)
{
}
}
else if(type=="kappa")
{
if(order==1)
{
}
if(order==2)
{
}
if(order==3)
{
}
if(order==4)
{
}
}
}

76
R/diffcgfGAL.R Normal file
View file

@ -0,0 +1,76 @@
# Differenciation of the cumulant generating fonction of the
# GAL distribution
#
# Author: Francois Pelletier
#
# LGPL 3.0
###############################################################################
#' Differenciation of the cumulant generating fonction of the
#' GAL distribution
#' @param u Transform variate point of evaluation
#' @param order Order of differenciation
#' @param param Parameters of the GAL distirbution
#' @param eval.time Time of the process
#' @param type Choose between "mu" or "kappa" parametrization
#' @param log Logical for log-parameters
#' @return The value of the derivative at the transform variate point
#' of evaluation
#'
#' @author Francois Pelletier
diffcgfGAL <- function(u,order,param,eval.time=1,type="mu",log=FALSE)
{
if(type=="mu")
{
if(order==1)
{
}
if(order==2)
{
2*eval.time*param[4]*(2*param[2]^2*u*param[3]+
2*param[3]^2+2*param[2]^2+param[2]^4*u^2)/
(-2+param[2]^2*u^2+2*param[3]*u)^2
}
if(order==3)
{
-4*eval.time*param[4]*(3*param[2]^4*u^2*param[3]+
6*param[2]^2*u*param[3]^2+param[2]^6*u^3+
6*param[2]^4*u+6*param[2]^2*param[3]+4*param[3]^3)/
(-2+param[2]^2*u^2+2*param[3]*u)^3
}
if(order==4)
{
(12*param[2]^8*param[4]*u^4+48*param[3]*param[2]^6*param[4]*u^3+
(144*param[2]^6+144*param[3]^2*param[2]^4)*param[4]*u^2+
(288*param[3]*param[2]^4+192*param[3]^3*param[2]^2)*param[4]*u+
(48*param[2]^4+192*param[3]^2*param[2]^2+96*param[3]^4)*param[4])/
(param[2]^8*u^8+8*param[3]*param[2]^6*u^7+
(24*param[3]^2*param[2]^4-8*param[2]^6)*u^6+
(32*param[3]^3*param[2]^2-48*param[3]*param[2]^4)*u^5+
(24*param[2]^4-96*param[3]^2*param[2]^2+16*param[3]^4)*u^4+
(96*param[3]*param[2]^2-64*param[3]^3)*u^3+
(96*param[3]^2-32*param[2]^2)*u^2+(-64)*param[3]*u+16)
}
}
if(type=="kappa")
{
if(order==1)
{
}
if(order==2)
{
}
if(order==3)
{
}
if(order==4)
{
}
}
}

28
R/dnormapproxEsscherLM.R Normal file
View file

@ -0,0 +1,28 @@
# Normal approximation of the density function of the Esscher
# transform of a Laplace Motion
#
# Author: Francois Pelletier
#
# LGPL 3.0
###############################################################################
#' Normal approximation of the density function of the
#' Esscher transform of a Laplace Motion
#' @param x vector of quantiles
#' @param param Parameter vector
#' @param hEsscher Esscher transform parameter
#' @param eval.time Time of the process
#' @param type Choose between "mu" or "kappa" parametrization
#' @param log Logical for log-parameters
#' @param start Starting value of the process
#' @return Normal density function approximation of the Esscher transform
#' of the specified Laplace motion
dnormapproxEsscherLM <- function(x,param,hEsscher=0,eval.time=1,type="mu",log=FALSE,start=0)
{
dnorm(x,start+eval.time*(mGAL(1,param,type,log)+hEsscher*cmGAL(2,param,type,log)),
sqrt(eval.time*cmGAL(2,param,type,log)))
}

22
R/dsaddleapproxGAL.R Normal file
View file

@ -0,0 +1,22 @@
# Saddlepoint approximation of the density function of the
# GAL distribution
#
# Author: Francois Pelletier
#
# LGPL 3.0
###############################################################################
#' Saddlepoint approximation of the density function of the
#' GAL distribution
#' @param x vector of quantiles
#' @param param Parameter vector
#' @param eval.time Time of the process
#' @param type Choose between "mu" or "kappa" parametrization
#' @param log Logical for log-parameters
#' @return Saddlepoint approximation of the density function
dsaddleapproxGAL <- function(x,param,eval.time=1,type="mu",log=FALSE)
{
s <- saddlepointGAL(x,param,eval.time,type,log)
1/sqrt(2*pi*diffcgfGAL(s,2,param,eval.time,type,log)) * exp(cgfGAL(s,param,type,log)-s*x)
}

41
R/mgfGAL.R Normal file
View file

@ -0,0 +1,41 @@
# Moment generating function of GAL distribution
#
# Author: Francois Pelletier
#
# LGPL 3.0
###############################################################################
#' Moment generating function of GAL distribution
#' @param u Transform variate
#' @param param Parameter vector
#' @param type Choose between "mu" or "kappa" parametrization
#' @param log Logical for log-parameters
#' @return Moment generating function value at point u for given parameter vector
#'
#' @author Francois Pelletier
mgfGAL <- function(u,param,type="mu",log=FALSE)
{
testparGAL(param,type,log)
if(log)
{
if(type=="mu")
{
exp(exp(param[1])*u)*(1-(1/2)*exp(param[2])^2*u^2-exp(param[3])*u)^(-exp(param[4]))
}
if(type=="kappa")
{
exp(exp(param[1])*u)*((exp(param[2])^2*u^2)/2+(exp(param[3])*exp(param[2])*u)/sqrt(2)-(exp(param[2])*u)/(sqrt(2)*exp(param[3]))+1)^(-exp(param[4]))
}
}
else
{
if(type=="mu")
{
exp(param[1]*u)*(1-(1/2)*param[2]^2*u^2-param[3]*u)^(-param[4])
}
if(type=="kappa")
{
exp(param[1]*u)*((param[2]^2*u^2)/2+(param[3]*param[2]*u)/sqrt(2)-(param[2]*u)/(sqrt(2)*param[3])+1)^(-param[4])
}
}
}

27
R/pnormapproxEsscherLM.R Normal file
View file

@ -0,0 +1,27 @@
# Normal approximation of the distribution function of the Esscher
# transform of a Laplace Motion
#
# Author: Francois Pelletier
#
# LGPL 3.0
###############################################################################
#' Normal approximation of the distribution function of the
#' Esscher transform of a Laplace Motion
#' @param x vector of quantiles
#' @param param Parameter vector
#' @param hEsscher Esscher transform parameter
#' @param eval.time Time of the process
#' @param type Choose between "mu" or "kappa" parametrization
#' @param log Logical for log-parameters
#' @param start Starting value of the process
#' @return Normal distribution function approximation
pnormapproxEsscherLM <- function(x,param,hEsscher=0,eval.time=1,type="mu",log=FALSE,start=0)
{
pnorm(x,start+eval.time*(mGAL(1,param,type,log)+hEsscher*cmGAL(2,param,type,log)),
sqrt(eval.time*cmGAL(2,param,type,log)))
}

View file

@ -0,0 +1,33 @@
# Saddlepoint approximation of the distribution function of the Esscher
# transform of the GAL distribution
#
# Author: Francois Pelletier
#
# LGPL 3.0
###############################################################################
#' Saddlepoint approximation of the distribution function of the Esscher
#' transform of the GAL distribution
#' @param x vector of quantiles
#' @param param Parameter vector
#' @param eval.time Time of the process
#' @param type Choose between "mu" or "kappa" parametrization
#' @param log Logical for log-parameters
#' @return Saddlepoint approximation of the distribution function
psaddleapproxEsscherGAL <- function(x,param,eval.time=1,type="mu",log=FALSE)
{
s <- saddlepointEsscherGAL(x,param,eval.time,type,log)
u <- s * sqrt(diffcgfEsscherGAL(s,2,param,eval.time,type,log))
w <- sign(s)*sqrt(2*(s*x-cgfEsscherGAL(s,param,type,log)))
if(x==mGAL(1,param,type,log))
{
1/2 + diffcgfEsscherGAL(0,3,param,eval.time,type,log)/
(6*sqrt(2*pi)*diffcgfEsscherGAL(0,2,param,eval.time,type,log)^(3/2))
}
else
{
pnorm(w)+dnorm(w)*(1/w-1/u)
}
}

33
R/psaddleapproxGAL.R Normal file
View file

@ -0,0 +1,33 @@
# Saddlepoint approximation of the distribution function of the
# GAL distribution
#
# Author: Francois Pelletier
#
# LGPL 3.0
###############################################################################
#' Saddlepoint approximation of the distribution function of the
#' GAL distribution
#' @param x vector of quantiles
#' @param param Parameter vector
#' @param eval.time Time of the process
#' @param type Choose between "mu" or "kappa" parametrization
#' @param log Logical for log-parameters
#' @return Saddlepoint approximation of the distribution function
psaddleapproxGAL <- function(x,param,eval.time=1,type="mu",log=FALSE)
{
s <- saddlepointGAL(x,param,eval.time,type,log)
u <- s * sqrt(diffcgfGAL(s,2,param,eval.time,type,log))
w <- sign(s)*sqrt(2*(s*x-cgfGAL(s,param,type,log)))
if(x==mGAL(1,param,type,log))
{
1/2 + diffcgfGAL(0,3,param,eval.time,type,log)/
(6*sqrt(2*pi)*diffcgfGAL(0,2,param,eval.time,type,log)^(3/2))
}
else
{
pnorm(w)+dnorm(w)*(1/w-1/u)
}
}

36
R/saddlepointEsscherGAL.R Normal file
View file

@ -0,0 +1,36 @@
# Evaluation of the saddlepoint of the Esscher transform with
# parameter 1 of the GAL distribution for given quantiles
#
# Author: Francois Pelletier
#
# LGPL 3.0
###############################################################################
#' Evaluation of the saddlepoint of the Esscher transform with
#' parameter 1 of the GAL distribution for given quantiles
#' @param x vector of quantiles
#' @param param Parameters of the underlying GAL distribution
#' @param eval.time Time of the process
#' @param type Choose between "mu" or "kappa" parametrization
#' @param log Logical for log-parameters
#' @return The value of the saddlepoint for each point of the vector of quantiles
#'
#' @author Francois Pelletier
saddlepointEsscherGAL <- function(x,param,eval.time=1,type="mu",log=FALSE)
{
if(type=="mu")
{
(-eval.time*param[1]*param[2]^2+eval.time*param[4]*param[2]^2+x*param[2]^2-
eval.time*param[1]*param[3]+x*param[3]-
sqrt(eval.time^2*param[1]^2*param[3]^2-2*eval.time*param[1]*param[3]^2*x+
eval.time^2*param[4]^2*param[2]^4+x^2*param[3]^2+
2*eval.time^2*param[1]^2*param[2]^2-
4*eval.time*param[1]*param[2]^2*x+2*x^2*param[2]^2))/
(param[2]^2*(eval.time*param[1]-x))
}
else if (type=="kappa")
{
}
}

32
R/saddlepointGAL.R Normal file
View file

@ -0,0 +1,32 @@
# Evaluation of the saddlepoint of the GAL distribution for given quantiles
#
# Author: Francois Pelletier
#
# LGPL 3.0
###############################################################################
#' Evaluation of the saddlepoint of the GAL distribution for given quantiles
#' @param x vector of quantiles
#' @param param Parameters of the GAL distribution
#' @param eval.time Time of the process
#' @param type Choose between "mu" or "kappa" parametrization
#' @param log Logical for log-parameters
#' @return The value of the saddlepoint for each point of the vector of quantiles
#'
#' @author Francois Pelletier
saddlepointGAL <- function(x,param,eval.time=1,type="mu",log=FALSE)
{
if(type=="mu")
{
(-eval.time*param[1]*param[3]+eval.time*param[4]*param[2]^2+x*param[3]-
(eval.time^2*param[1]^2*param[3]^2-2*eval.time*param[1]*param[3]^2*x+
eval.time^2*param[4]^2*param[2]^4+x^2*param[3]^2+2*eval.time^2*param[1]^2*
param[2]^2-4*eval.time*param[1]*param[2]^2*x+2*x^2*param[2]^2)^(1/2))/
param[2]^2/(eval.time*param[1]-x)
}
if(type=="kappa")
{
}
}

View file

@ -2,7 +2,7 @@
\alias{cfLM}
\title{Characteristic function of Laplace motion}
\usage{
cfLM(u, param, time, type = "mu", log = FALSE, start = 0)
cfLM(u, param, time = 1, type = "mu", log = FALSE, start = 0)
}
\arguments{
\item{u}{Transform variate}

31
man/cgfEsscherGAL.Rd Normal file
View file

@ -0,0 +1,31 @@
\name{cgfEsscherGAL}
\alias{cgfEsscherGAL}
\title{Cumulant generating function of the
Esscher transform with parameter 1 of GAL distribution}
\usage{
cgfEsscherGAL(u, param, eval.time = 1, type = "mu", log = FALSE)
}
\arguments{
\item{u}{Transform variate}
\item{param}{Parameter vector}
\item{eval.time}{Time of the process}
\item{type}{Choose between "mu" or "kappa"
parametrization}
\item{log}{Logical for log-parameters}
}
\value{
Cumulant generating function value at point u for given
parameter vector
}
\description{
Cumulant generating function of the Esscher transform with
parameter 1 of GAL distribution
}
\author{
Francois Pelletier
}

34
man/diffcgfEsscherGAL.Rd Normal file
View file

@ -0,0 +1,34 @@
\name{diffcgfEsscherGAL}
\alias{diffcgfEsscherGAL}
\title{Differenciation of the cumulant generating fonction of the
Esscher transform with parameter 1 of the GAL distribution}
\usage{
diffcgfEsscherGAL(u, order, param, eval.time = 1, type = "mu",
log = FALSE)
}
\arguments{
\item{u}{Transform variate point of evaluation}
\item{order}{Order of differenciation}
\item{param}{Parameters of the GAL distirbution}
\item{eval.time}{Time of the process}
\item{type}{Choose between "mu" or "kappa"
parametrization}
\item{log}{Logical for log-parameters}
}
\value{
The value of the derivative at the transform variate point
of evaluation
}
\description{
Differenciation of the cumulant generating fonction of the
Esscher transform with parameter 1 of the GAL distribution
}
\author{
Francois Pelletier
}

33
man/diffcgfGAL.Rd Normal file
View file

@ -0,0 +1,33 @@
\name{diffcgfGAL}
\alias{diffcgfGAL}
\title{Differenciation of the cumulant generating fonction of the
GAL distribution}
\usage{
diffcgfGAL(u, order, param, eval.time = 1, type = "mu", log = FALSE)
}
\arguments{
\item{u}{Transform variate point of evaluation}
\item{order}{Order of differenciation}
\item{param}{Parameters of the GAL distirbution}
\item{eval.time}{Time of the process}
\item{type}{Choose between "mu" or "kappa"
parametrization}
\item{log}{Logical for log-parameters}
}
\value{
The value of the derivative at the transform variate point
of evaluation
}
\description{
Differenciation of the cumulant generating fonction of the
GAL distribution
}
\author{
Francois Pelletier
}

View file

@ -0,0 +1,33 @@
\name{dnormapproxEsscherLM}
\alias{dnormapproxEsscherLM}
\title{Normal approximation of the density function of the
Esscher transform of a Laplace Motion}
\usage{
dnormapproxEsscherLM(x, param, hEsscher = 0, eval.time = 1, type = "mu",
log = FALSE, start = 0)
}
\arguments{
\item{x}{vector of quantiles}
\item{param}{Parameter vector}
\item{hEsscher}{Esscher transform parameter}
\item{eval.time}{Time of the process}
\item{type}{Choose between "mu" or "kappa"
parametrization}
\item{log}{Logical for log-parameters}
\item{start}{Starting value of the process}
}
\value{
Normal density function approximation of the Esscher
transform of the specified Laplace motion
}
\description{
Normal approximation of the density function of the Esscher
transform of a Laplace Motion
}

27
man/dsaddleapproxGAL.Rd Normal file
View file

@ -0,0 +1,27 @@
\name{dsaddleapproxGAL}
\alias{dsaddleapproxGAL}
\title{Saddlepoint approximation of the density function of the
GAL distribution}
\usage{
dsaddleapproxGAL(x, param, eval.time = 1, type = "mu", log = FALSE)
}
\arguments{
\item{x}{vector of quantiles}
\item{param}{Parameter vector}
\item{eval.time}{Time of the process}
\item{type}{Choose between "mu" or "kappa"
parametrization}
\item{log}{Logical for log-parameters}
}
\value{
Saddlepoint approximation of the density function
}
\description{
Saddlepoint approximation of the density function of the
GAL distribution
}

View file

@ -0,0 +1,32 @@
\name{pnormapproxEsscherLM}
\alias{pnormapproxEsscherLM}
\title{Normal approximation of the distribution function of the
Esscher transform of a Laplace Motion}
\usage{
pnormapproxEsscherLM(x, param, hEsscher = 0, eval.time = 1, type = "mu",
log = FALSE, start = 0)
}
\arguments{
\item{x}{vector of quantiles}
\item{param}{Parameter vector}
\item{hEsscher}{Esscher transform parameter}
\item{eval.time}{Time of the process}
\item{type}{Choose between "mu" or "kappa"
parametrization}
\item{log}{Logical for log-parameters}
\item{start}{Starting value of the process}
}
\value{
Normal distribution function approximation
}
\description{
Normal approximation of the distribution function of the
Esscher transform of a Laplace Motion
}

View file

@ -0,0 +1,27 @@
\name{psaddleapproxEsscherGAL}
\alias{psaddleapproxEsscherGAL}
\title{Saddlepoint approximation of the distribution function of the Esscher
transform of the GAL distribution}
\usage{
psaddleapproxEsscherGAL(x, param, eval.time = 1, type = "mu", log = FALSE)
}
\arguments{
\item{x}{vector of quantiles}
\item{param}{Parameter vector}
\item{eval.time}{Time of the process}
\item{type}{Choose between "mu" or "kappa"
parametrization}
\item{log}{Logical for log-parameters}
}
\value{
Saddlepoint approximation of the distribution function
}
\description{
Saddlepoint approximation of the distribution function of
the Esscher transform of the GAL distribution
}

27
man/psaddleapproxGAL.Rd Normal file
View file

@ -0,0 +1,27 @@
\name{psaddleapproxGAL}
\alias{psaddleapproxGAL}
\title{Saddlepoint approximation of the distribution function of the
GAL distribution}
\usage{
psaddleapproxGAL(x, param, eval.time = 1, type = "mu", log = FALSE)
}
\arguments{
\item{x}{vector of quantiles}
\item{param}{Parameter vector}
\item{eval.time}{Time of the process}
\item{type}{Choose between "mu" or "kappa"
parametrization}
\item{log}{Logical for log-parameters}
}
\value{
Saddlepoint approximation of the distribution function
}
\description{
Saddlepoint approximation of the distribution function of
the GAL distribution
}

View file

@ -0,0 +1,32 @@
\name{saddlepointEsscherGAL}
\alias{saddlepointEsscherGAL}
\title{Evaluation of the saddlepoint of the Esscher transform with
parameter 1 of the GAL distribution for given quantiles}
\usage{
saddlepointEsscherGAL(x, param, eval.time = 1, type = "mu", log = FALSE)
}
\arguments{
\item{x}{vector of quantiles}
\item{param}{Parameters of the underlying GAL
distribution}
\item{eval.time}{Time of the process}
\item{type}{Choose between "mu" or "kappa"
parametrization}
\item{log}{Logical for log-parameters}
}
\value{
The value of the saddlepoint for each point of the vector
of quantiles
}
\description{
Evaluation of the saddlepoint of the Esscher transform with
parameter 1 of the GAL distribution for given quantiles
}
\author{
Francois Pelletier
}

30
man/saddlepointGAL.Rd Normal file
View file

@ -0,0 +1,30 @@
\name{saddlepointGAL}
\alias{saddlepointGAL}
\title{Evaluation of the saddlepoint of the GAL distribution for given quantiles}
\usage{
saddlepointGAL(x, param, eval.time = 1, type = "mu", log = FALSE)
}
\arguments{
\item{x}{vector of quantiles}
\item{param}{Parameters of the GAL distribution}
\item{eval.time}{Time of the process}
\item{type}{Choose between "mu" or "kappa"
parametrization}
\item{log}{Logical for log-parameters}
}
\value{
The value of the saddlepoint for each point of the vector
of quantiles
}
\description{
Evaluation of the saddlepoint of the GAL distribution for
given quantiles
}
\author{
Francois Pelletier
}