Ajout des return() et update du namespace avec roxygen
This commit is contained in:
parent
5c517865aa
commit
8ec217769d
24 changed files with 46 additions and 46 deletions
47
NAMESPACE
47
NAMESPACE
|
@ -1,24 +1,23 @@
|
|||
export(a.Crowder.Mod,
|
||||
a.Crowder,
|
||||
a.gauss,
|
||||
b.Crowder.Mod,
|
||||
b.Crowder,
|
||||
b.gauss,
|
||||
confidence.interval.QEE,
|
||||
covariance.QEE,
|
||||
eqn.Crowder.Mod,
|
||||
eqn.Crowder,
|
||||
eqn.gauss,
|
||||
gammaf.Crowder.Mod,
|
||||
gammaf.Crowder,
|
||||
M.Crowder.Mod,
|
||||
M.Crowder,
|
||||
M.gauss,
|
||||
obj.Crowder.Mod,
|
||||
obj.Crowder,
|
||||
obj.gauss,
|
||||
V.Crowder.Mod,
|
||||
V.Crowder,
|
||||
V.gauss,
|
||||
Wald.Test
|
||||
)
|
||||
export(M.Crowder)
|
||||
export(M.Crowder.Mod)
|
||||
export(M.gauss)
|
||||
export(V.Crowder)
|
||||
export(V.Crowder.Mod)
|
||||
export(V.gauss)
|
||||
export(Wald.Test)
|
||||
export(a.Crowder)
|
||||
export(a.Crowder.Mod)
|
||||
export(a.gauss)
|
||||
export(b.Crowder)
|
||||
export(b.Crowder.Mod)
|
||||
export(b.gauss)
|
||||
export(confidence.interval.QEE)
|
||||
export(covariance.QEE)
|
||||
export(eqn.Crowder)
|
||||
export(eqn.Crowder.Mod)
|
||||
export(eqn.gauss)
|
||||
export(gammaf.Crowder)
|
||||
export(gammaf.Crowder.Mod)
|
||||
export(obj.Crowder)
|
||||
export(obj.Crowder.Mod)
|
||||
export(obj.gauss)
|
||||
|
|
|
@ -16,7 +16,7 @@
|
|||
#' @param dmean Derivative in respect to the parameter vector of the mean function of the distribution
|
||||
#' @param dsd Derivative in respect to the parameter vector of the standard deviation function of the distribution
|
||||
#' @return M Matrix
|
||||
#'
|
||||
#' @export M.Crowder.Mod
|
||||
#' @author Francois Pelletier
|
||||
M.Crowder.Mod <- function(param,Y,variancef,skewnessf,kurtosisf,dmean,dsd)
|
||||
{
|
||||
|
|
|
@ -17,7 +17,7 @@
|
|||
#' @param dmean Derivative in respect to the parameter vector of the mean function of the distribution
|
||||
#' @param dsd Derivative in respect to the parameter vector of the standard deviation function of the distribution
|
||||
#' @return M Matrix
|
||||
#'
|
||||
#' @export M.Crowder
|
||||
#' @author Francois Pelletier
|
||||
M.Crowder <- function(param,Y,variancef,skewnessf,kurtosisf,dmean,dsd)
|
||||
{
|
||||
|
|
|
@ -13,7 +13,7 @@
|
|||
#' @param dmean Derivative in respect to the parameter vector of the mean function of the distribution
|
||||
#' @param dsd Derivative in respect to the parameter vector of the standard deviation function of the distribution
|
||||
#' @return M Matrix
|
||||
#'
|
||||
#' @export M.gauss
|
||||
#' @author Francois Pelletier
|
||||
M.gauss <- function(param,Y,meanf,variancef,dmean,dsd)
|
||||
{
|
||||
|
|
|
@ -13,7 +13,7 @@
|
|||
#' @param dmean Derivative in respect to the parameter vector of the mean function of the distribution
|
||||
#' @param dsd Derivative in respect to the parameter vector of the standard deviation function of the distribution
|
||||
#' @return V Matrix
|
||||
#'
|
||||
#' @export V.Crowder.Mod
|
||||
#' @author Francois Pelletier
|
||||
V.Crowder.Mod <- function(param,Y,variancef,dmean,dsd)
|
||||
{
|
||||
|
|
|
@ -15,7 +15,7 @@
|
|||
#' @param dmean Derivative in respect to the parameter vector of the mean function of the distribution
|
||||
#' @param dsd Derivative in respect to the parameter vector of the standard deviation function of the distribution
|
||||
#' @return V Matrix
|
||||
#'
|
||||
#' @export V.Crowder
|
||||
#' @author Francois Pelletier
|
||||
V.Crowder <- function(param,Y,variancef,skewnessf,kurtosisf,dmean,dsd)
|
||||
{
|
||||
|
|
|
@ -16,7 +16,7 @@
|
|||
#' @param dmean Derivative in respect to the parameter vector of the mean function of the distribution
|
||||
#' @param dsd Derivative in respect to the parameter vector of the standard deviation function of the distribution
|
||||
#' @return V Matrix
|
||||
#'
|
||||
#' @export V.gauss
|
||||
#' @author Francois Pelletier
|
||||
V.gauss <- function(param,Y,meanf,variancef,skewnessf,kurtosisf,dmean,dsd)
|
||||
{
|
||||
|
|
|
@ -15,7 +15,7 @@
|
|||
#' @param eqn.gradient Gradient matrix of the estimating equations
|
||||
#' @param alpha level of confidence
|
||||
#' @return A list containing the statistic, p-value and reject of the null hypothesis
|
||||
#'
|
||||
#' @export Wald.Test
|
||||
#' @author François Pelletier
|
||||
Wald.Test <- function(param,n,R,r,eqn.covariance,eqn.gradient,alpha=0.05)
|
||||
{
|
||||
|
|
|
@ -13,7 +13,7 @@
|
|||
#' @param dmean Derivative in respect to the parameter vector of the mean function of the distribution
|
||||
#' @param dsd Derivative in respect to the parameter vector of the standard deviation function of the distribution
|
||||
#' @return First weighting vector
|
||||
#'
|
||||
#' @export a.Crowder.Mod
|
||||
#' @author Francois Pelletier
|
||||
a.Crowder.Mod <- function(param,Y,variancef,dmean,dsd)
|
||||
{
|
||||
|
|
|
@ -14,7 +14,7 @@
|
|||
#' @param dmean Derivative in respect to the parameter vector of the mean function of the distribution
|
||||
#' @param dsd Derivative in respect to the parameter vector of the standard deviation function of the distribution
|
||||
#' @return First weighting vector
|
||||
#'
|
||||
#' @export a.Crowder
|
||||
#' @author Francois Pelletier
|
||||
a.Crowder <- function(param,variancef,skewnessf,kurtosisf,dmean,dsd)
|
||||
{
|
||||
|
|
|
@ -10,7 +10,7 @@
|
|||
#' @param variancef Variance function of the distribution
|
||||
#' @param dmean Derivative in respect to the parameter vector of the mean function of the distribution
|
||||
#' @return First weighting vector
|
||||
#'
|
||||
#' @export a.gauss
|
||||
#' @author Francois Pelletier
|
||||
a.gauss <- function(param,variancef,dmean)
|
||||
{
|
||||
|
|
|
@ -13,7 +13,7 @@
|
|||
#' @param dmean Derivative in respect to the parameter vector of the mean function of the distribution
|
||||
#' @param dsd Derivative in respect to the parameter vector of the standard deviation function of the distribution
|
||||
#' @return First weighting vector
|
||||
#'
|
||||
#' @export b.Crowder.Mod
|
||||
#' @author Francois Pelletier
|
||||
b.Crowder.Mod <- function(param,Y,variancef,dmean,dsd)
|
||||
{
|
||||
|
|
|
@ -14,7 +14,7 @@
|
|||
#' @param dmean Derivative in respect to the parameter vector of the mean function of the distribution
|
||||
#' @param dsd Derivative in respect to the parameter vector of the standard deviation function of the distribution
|
||||
#' @return First weighting vector
|
||||
#'
|
||||
#' @export b.Crowder
|
||||
#' @author Francois Pelletier
|
||||
b.Crowder <- function(param,variancef,skewnessf,kurtosisf,dmean,dsd)
|
||||
{
|
||||
|
|
|
@ -10,7 +10,7 @@
|
|||
#' @param variancef Variance function of the distribution
|
||||
#' @param dsd Derivative in respect to the parameter vector of the standard deviation function of the distribution
|
||||
#' @return Second weighting vector
|
||||
#'
|
||||
#' @export b.gauss
|
||||
#' @author Francois Pelletier
|
||||
b.gauss <- function(param,variancef,dsd)
|
||||
{
|
||||
|
|
|
@ -12,7 +12,7 @@
|
|||
#' @param covariance Covariance matrix
|
||||
#' @param alpha confidence level
|
||||
#' @return 3 line matrix with lower bound, estimate and upper bound
|
||||
#'
|
||||
#' @export confidence.interval.QEE
|
||||
#' @author François Pelletier
|
||||
confidence.interval.QEE <- function(param,covariance,n,alpha=0.05)
|
||||
{
|
||||
|
|
|
@ -12,6 +12,7 @@
|
|||
#' @param V Covariance matrix of equations
|
||||
#' @param n Sample size
|
||||
#' @return Weighted covariance matrix
|
||||
#' @export covariance.QEE
|
||||
#' @author François Pelletier
|
||||
covariance.QEE <- function(M,V,n) ## Omega
|
||||
{
|
||||
|
|
|
@ -14,7 +14,7 @@
|
|||
#' @param dmean Derivative in respect to the parameter vector of the mean function of the distribution
|
||||
#' @param dsd Derivative in respect to the parameter vector of the standard deviation function of the distribution
|
||||
#' @return The vector value of the estimating equation
|
||||
#'
|
||||
#' @export eqn.Crowder.Mod
|
||||
#' @author Francois Pelletier
|
||||
eqn.Crowder.Mod <- function(param,Y,meanf,variancef,dmean,dsd)
|
||||
{
|
||||
|
|
|
@ -16,7 +16,7 @@
|
|||
#' @param dmean Derivative in respect to the parameter vector of the mean function of the distribution
|
||||
#' @param dsd Derivative in respect to the parameter vector of the standard deviation function of the distribution
|
||||
#' @return The vector value of the estimating equation
|
||||
#'
|
||||
#' @export eqn.Crowder
|
||||
#' @author Francois Pelletier
|
||||
eqn.Crowder <- function(param,Y,meanf,variancef,skewnessf,kurtosisf,dmean,dsd)
|
||||
{
|
||||
|
|
|
@ -14,7 +14,7 @@
|
|||
#' @param dmean Derivative in respect to the parameter vector of the mean function of the distribution
|
||||
#' @param dsd Derivative in respect to the parameter vector of the standard deviation function of the distribution
|
||||
#' @return The vector value of the estimating equation
|
||||
#'
|
||||
#' @export eqn.gauss
|
||||
#' @author Francois Pelletier
|
||||
eqn.gauss <- function(param,Y,meanf,variancef,dmean,dsd)
|
||||
{
|
||||
|
|
|
@ -9,7 +9,7 @@
|
|||
#' Gamma function used in Modified Crowder Estimating Equations
|
||||
#' @param Y Individual data sample
|
||||
#' @return Gamma function value
|
||||
#'
|
||||
#' @export gammaf.Crowder.Mod
|
||||
#' @author Francois Pelletier
|
||||
gammaf.Crowder.Mod <- function(Y)
|
||||
{
|
||||
|
|
|
@ -11,7 +11,7 @@
|
|||
#' @param skewnessf Skewness function of the distribution
|
||||
#' @param kurtosisf Kurtosis function of the distribution
|
||||
#' @return Gamma function value
|
||||
#'
|
||||
#' @export gammaf.Crowder
|
||||
#' @author Francois Pelletier
|
||||
gammaf.Crowder <- function(param,skewnessf,kurtosisf)
|
||||
{
|
||||
|
|
|
@ -14,7 +14,7 @@
|
|||
#' @param dsd Derivative in respect to the parameter vector of the standard deviation function of the distribution
|
||||
#' @param Q Weight matrix
|
||||
#' @return The value of the quadratic form
|
||||
#'
|
||||
#' @export obj.Crowder.Mod
|
||||
#' @author Francois Pelletier
|
||||
obj.Crowder.Mod <- function(param,Y,meanf,variancef,dmean,dsd,Q=diag(4))
|
||||
{
|
||||
|
|
|
@ -16,7 +16,7 @@
|
|||
#' @param dsd Derivative in respect to the parameter vector of the standard deviation function of the distribution
|
||||
#' @param Q Weight matrix
|
||||
#' @return The value of the quadratic form
|
||||
#'
|
||||
#' @export obj.Crowder
|
||||
#' @author Francois Pelletier
|
||||
obj.Crowder <- function(param,Y,meanf,variancef,skewnessf,kurtosisf,dmean,dsd,Q=diag(4))
|
||||
{
|
||||
|
|
|
@ -14,7 +14,7 @@
|
|||
#' @param dsd Derivative in respect to the parameter vector of the standard deviation function of the distribution
|
||||
#' @param Q Weight matrix
|
||||
#' @return The value of the quadratic form
|
||||
#'
|
||||
#' @export obj.gauss
|
||||
#' @author Francois Pelletier
|
||||
obj.gauss <- function(param,Y,meanf,variancef,dmean,dsd,Q=diag(4))
|
||||
{
|
||||
|
|
Loading…
Add table
Reference in a new issue