améliorations rapport et correction bogues dans le code
This commit is contained in:
parent
65b9a00d02
commit
596bdab5e1
4 changed files with 182 additions and 151 deletions
|
@ -13,7 +13,6 @@ import numpy as np
|
|||
import time
|
||||
import NeuralNode
|
||||
import metrics
|
||||
import random
|
||||
|
||||
# le nom de votre classe
|
||||
# NeuralNet pour le modèle Réseaux de Neurones
|
||||
|
@ -21,7 +20,7 @@ import random
|
|||
|
||||
class NeuralNet: #nom de la class à changer
|
||||
|
||||
def __init__(self, layers_size, all_labels, **kwargs):
|
||||
def __init__(self, layers_size, all_labels, input_weights=None, **kwargs):
|
||||
"""
|
||||
c'est un Initializer.
|
||||
Vous pouvez passer d'autre paramètres au besoin,
|
||||
|
@ -36,11 +35,11 @@ class NeuralNet: #nom de la class à changer
|
|||
# Couches cachées
|
||||
for j in range(self.n_hidden_layers):
|
||||
for i in range(self.layers_size[j+1]):
|
||||
self.layers[j].append(NeuralNode.NeuralNode(layers_size[j]))
|
||||
self.layers[j].append(NeuralNode.NeuralNode(layers_size[j],input_weights))
|
||||
|
||||
# Couche de sortie
|
||||
for i in range(layers_size[-1]):
|
||||
self.layers[-1].append(NeuralNode.NeuralNode(layers_size[-2]))
|
||||
self.layers[-1].append(NeuralNode.NeuralNode(layers_size[-2],input_weights))
|
||||
|
||||
def __str__(self):
|
||||
outstr = ""
|
||||
|
|
|
@ -11,10 +11,10 @@ import NeuralNetUtils as nnu
|
|||
class NeuralNode:
|
||||
def __init__(self, input_size, input_weights=None, **kwargs):
|
||||
self.input_size = input_size+1
|
||||
if (input_weights == None):
|
||||
if (input_weights is None):
|
||||
self.input_weights = np.random.uniform(-1,1,self.input_size)
|
||||
else:
|
||||
self.input_weights = input_weights
|
||||
self.input_weights = np.repeat(input_weights,self.input_size)
|
||||
|
||||
def __str__(self):
|
||||
return str(self.input_weights)
|
||||
|
|
File diff suppressed because one or more lines are too long
|
@ -41,13 +41,13 @@ def prediction_metrics(cm,obs_labels,pred_labels):
|
|||
if (not np.any(np.isnan(myPrecision))):
|
||||
precision.append(myPrecision)
|
||||
except:
|
||||
raise
|
||||
myPrecision = 0
|
||||
try:
|
||||
myRecall = cm[label_num,label_num] / sum(cm[label_num,:])
|
||||
if (not np.any(np.isnan(myRecall))):
|
||||
recall.append(myRecall)
|
||||
except:
|
||||
raise
|
||||
myRecall = 0
|
||||
|
||||
return accuracy, precision, recall
|
||||
|
||||
|
|
Loading…
Add table
Reference in a new issue