ajout code KNN tran fonctionnel
This commit is contained in:
commit
f23034e381
14 changed files with 2919 additions and 0 deletions
3
.gitignore
vendored
Normal file
3
.gitignore
vendored
Normal file
|
@ -0,0 +1,3 @@
|
|||
Code/__pycache__/
|
||||
*.pdf
|
||||
|
92
Code/BayesNaif.py
Normal file
92
Code/BayesNaif.py
Normal file
|
@ -0,0 +1,92 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*
|
||||
"""
|
||||
Vous allez definir une classe pour chaque algorithme que vous allez développer,
|
||||
votre classe doit contenit au moins les 3 methodes definies ici bas,
|
||||
* train : pour entrainer le modèle sur l'ensemble d'entrainement
|
||||
* predict : pour prédire la classe d'un exemple donné
|
||||
* test : pour tester sur l'ensemble de test
|
||||
vous pouvez rajouter d'autres méthodes qui peuvent vous etre utiles, mais moi
|
||||
je vais avoir besoin de tester les méthodes test, predict et test de votre code.
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
# le nom de votre classe
|
||||
# BayesNaif pour le modèle bayesien naif
|
||||
# Knn pour le modèle des k plus proches voisins
|
||||
|
||||
class BayesNaif: #nom de la class à changer
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
"""
|
||||
c'est un Initializer.
|
||||
Vous pouvez passer d'autre paramètres au besoin,
|
||||
c'est à vous d'utiliser vos propres notations
|
||||
"""
|
||||
|
||||
|
||||
def train(self, train, train_labels): #vous pouvez rajouter d'autres attribus au besoin
|
||||
"""
|
||||
c'est la méthode qui va entrainer votre modèle,
|
||||
train est une matrice de type Numpy et de taille nxm, avec
|
||||
n : le nombre d'exemple d'entrainement dans le dataset
|
||||
m : le mobre d'attribus (le nombre de caractéristiques)
|
||||
|
||||
train_labels : est une matrice numpy de taille nx1
|
||||
|
||||
vous pouvez rajouter d'autres arguments, il suffit juste de
|
||||
les expliquer en commentaire
|
||||
|
||||
|
||||
|
||||
------------
|
||||
Après avoir fait l'entrainement, faites maintenant le test sur
|
||||
les données d'entrainement
|
||||
IMPORTANT :
|
||||
Vous devez afficher ici avec la commande print() de python,
|
||||
- la matrice de confision (confusion matrix)
|
||||
- l'accuracy
|
||||
- la précision (precision)
|
||||
- le rappel (recall)
|
||||
|
||||
Bien entendu ces tests doivent etre faits sur les données d'entrainement
|
||||
nous allons faire d'autres tests sur les données de test dans la méthode test()
|
||||
"""
|
||||
|
||||
def predict(self, exemple, label):
|
||||
"""
|
||||
Prédire la classe d'un exemple donné en entrée
|
||||
exemple est de taille 1xm
|
||||
|
||||
si la valeur retournée est la meme que la veleur dans label
|
||||
alors l'exemple est bien classifié, si non c'est une missclassification
|
||||
|
||||
"""
|
||||
|
||||
def test(self, test, test_labels):
|
||||
"""
|
||||
c'est la méthode qui va tester votre modèle sur les données de test
|
||||
l'argument test est une matrice de type Numpy et de taille nxm, avec
|
||||
n : le nombre d'exemple de test dans le dataset
|
||||
m : le mobre d'attribus (le nombre de caractéristiques)
|
||||
|
||||
test_labels : est une matrice numpy de taille nx1
|
||||
|
||||
vous pouvez rajouter d'autres arguments, il suffit juste de
|
||||
les expliquer en commentaire
|
||||
|
||||
Faites le test sur les données de test, et afficher :
|
||||
- la matrice de confision (confusion matrix)
|
||||
- l'accuracy
|
||||
- la précision (precision)
|
||||
- le rappel (recall)
|
||||
|
||||
Bien entendu ces tests doivent etre faits sur les données de test seulement
|
||||
|
||||
"""
|
||||
|
||||
|
||||
# Vous pouvez rajouter d'autres méthodes et fonctions,
|
||||
# il suffit juste de les commenter.
|
186
Code/Knn.py
Normal file
186
Code/Knn.py
Normal file
|
@ -0,0 +1,186 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*
|
||||
"""
|
||||
Vous allez definir une classe pour chaque algorithme que vous allez développer,
|
||||
votre classe doit contenit au moins les 3 methodes definies ici bas,
|
||||
* train : pour entrainer le modèle sur l'ensemble d'entrainement
|
||||
* predict : pour prédire la classe d'un exemple donné
|
||||
* test : pour tester sur l'ensemble de test
|
||||
vous pouvez rajouter d'autres méthodes qui peuvent vous etre utiles, mais moi
|
||||
je vais avoir besoin de tester les méthodes test, predict et test de votre code.
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
|
||||
def minkowski_distance(x,y,p_value):
|
||||
return pow(sum(pow(abs(a-b),p_value) for a,b in zip(x, y)),1/p_value)
|
||||
|
||||
def mode(a):
|
||||
u, c = np.unique(a, return_counts=True)
|
||||
return u[c.argmax()]
|
||||
|
||||
# le nom de votre classe
|
||||
# BayesNaif pour le modèle bayesien naif
|
||||
# Knn pour le modèle des k plus proches voisins
|
||||
|
||||
class Knn: #nom de la class à changer
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
"""
|
||||
c'est un Initializer.
|
||||
Vous pouvez passer d'autre paramètres au besoin,
|
||||
c'est à vous d'utiliser vos propres notations
|
||||
"""
|
||||
self.k=5
|
||||
|
||||
|
||||
def train(self, train, train_labels): #vous pouvez rajouter d'autres attribus au besoin
|
||||
"""
|
||||
c'est la méthode qui va entrainer votre modèle,
|
||||
train est une matrice de type Numpy et de taille nxm, avec
|
||||
n : le nombre d'exemple d'entrainement dans le dataset
|
||||
m : le mobre d'attribus (le nombre de caractéristiques)
|
||||
|
||||
train_labels : est une matrice numpy de taille nx1
|
||||
|
||||
vous pouvez rajouter d'autres arguments, il suffit juste de
|
||||
les expliquer en commentaire
|
||||
|
||||
|
||||
|
||||
------------
|
||||
Après avoir fait l'entrainement, faites maintenant le test sur
|
||||
les données d'entrainement
|
||||
IMPORTANT :
|
||||
Vous devez afficher ici avec la commande print() de python,
|
||||
- la matrice de confision (confusion matrix)
|
||||
- l'accuracy
|
||||
- la précision (precision)
|
||||
- le rappel (recall)
|
||||
|
||||
Bien entendu ces tests doivent etre faits sur les données d'entrainement
|
||||
nous allons faire d'autres tests sur les données de test dans la méthode test()
|
||||
"""
|
||||
|
||||
# on fait seulement utiliser les données du jeu d'entrainement comme paramètre d'un modèle Knn
|
||||
self.train=train
|
||||
self.train_labels=train_labels
|
||||
|
||||
n,m = train.shape
|
||||
p=m
|
||||
nn=np.empty((n,self.k,2))
|
||||
|
||||
# On trouve les k plus proches voisins et leur distance pour chacunes des observations du training set
|
||||
# On enlève la valeur testée de la liste des points pour lesquels on mesure la distance car on sait qu'elle vaut 0.
|
||||
# On veut tester sur les autres points seulement
|
||||
for x in range(n):
|
||||
i_range = [i for i in range(n)]
|
||||
i_range.pop(x)
|
||||
nn[x,:,0]=i_range[0:self.k]
|
||||
nn[x,:,1]=np.apply_along_axis(minkowski_distance,1,self.train[i_range[0:self.k]],train[x],p)
|
||||
for i in i_range[self.k:n]:
|
||||
dist = minkowski_distance(self.train[i],train[x],p)
|
||||
nn_dist=nn[x,:,1]
|
||||
distdiff = nn_dist-dist
|
||||
max_distdiff=max(distdiff)
|
||||
if(max_distdiff>0):
|
||||
pos_changement = np.argwhere(nn_dist==max(nn_dist))[0]
|
||||
nn[x,pos_changement,0]=i
|
||||
nn[x,pos_changement,1]=max_distdiff
|
||||
# on retrouve le label modal pour chacunes des observations
|
||||
nn_labels = self.train_labels[nn[:,:,0].astype(np.int)]
|
||||
nn_mode_label = np.apply_along_axis(mode,1,nn_labels)
|
||||
|
||||
# on construit la matrice de confusion
|
||||
cm = self.confusion_matrix(train_labels,nn_mode_label)
|
||||
accuracy, precision, recall = self.prediction_metrics(cm,train_labels,nn_mode_label)
|
||||
self.print_prediction_metrics(cm,accuracy,precision,recall)
|
||||
|
||||
return cm,accuracy,precision,recall
|
||||
|
||||
|
||||
def predict(self, exemple, label):
|
||||
"""
|
||||
Prédire la classe d'un exemple donné en entrée
|
||||
exemple est de taille 1xm
|
||||
|
||||
si la valeur retournée est la meme que la veleur dans label
|
||||
alors l'exemple est bien classifié, si non c'est une missclassification
|
||||
|
||||
"""
|
||||
|
||||
|
||||
|
||||
|
||||
def test(self, test, test_labels):
|
||||
"""
|
||||
c'est la méthode qui va tester votre modèle sur les données de test
|
||||
l'argument test est une matrice de type Numpy et de taille nxm, avec
|
||||
n : le nombre d'exemple de test dans le dataset
|
||||
m : le mobre d'attribus (le nombre de caractéristiques)
|
||||
|
||||
test_labels : est une matrice numpy de taille nx1
|
||||
|
||||
vous pouvez rajouter d'autres arguments, il suffit juste de
|
||||
les expliquer en commentaire
|
||||
|
||||
Faites le test sur les données de test, et afficher :
|
||||
- la matrice de confision (confusion matrix)
|
||||
- l'accuracy
|
||||
- la précision (precision)
|
||||
- le rappel (recall)
|
||||
|
||||
Bien entendu ces tests doivent etre faits sur les données de test seulement
|
||||
|
||||
"""
|
||||
|
||||
def confusion_matrix(self,obs_labels,pred_labels):
|
||||
"""
|
||||
Retourne la matrice de confusion
|
||||
Prend en entrée deux vecteurs d'étiquettes: observations et prédictions
|
||||
Retourne une matrice NumPy
|
||||
"""
|
||||
unique_obs_labels=np.unique(obs_labels)
|
||||
unique_pred_labels=np.unique(pred_labels)
|
||||
nb_unique_obs_labels=(unique_obs_labels.shape)[0]
|
||||
nb_unique_pred_labels=(unique_pred_labels.shape)[0]
|
||||
|
||||
confusion_matrix = np.zeros((nb_unique_obs_labels,nb_unique_pred_labels))
|
||||
|
||||
for observed,predicted in zip(obs_labels,pred_labels):
|
||||
confusion_matrix[observed][predicted] += 1
|
||||
return confusion_matrix
|
||||
|
||||
def prediction_metrics(self,cm,obs_labels,pred_labels):
|
||||
"""
|
||||
Cette fonction retourne les métriques accuracy, precision et recall
|
||||
Elle prend en entrée la matrice de confusion et les vecteurs d'étiquettes: observations et prédictions
|
||||
accuracy=(tp+tn)/all
|
||||
precision=tp/(tp+fp)
|
||||
recall=tp/(tp+fn)
|
||||
"""
|
||||
|
||||
accuracy = (obs_labels == pred_labels).sum() / float(len(obs_labels))
|
||||
precision=[]
|
||||
recall=[]
|
||||
for label_num in np.unique(obs_labels):
|
||||
precision.append(cm[label_num,label_num] / sum(cm[:,label_num]))
|
||||
recall.append(cm[label_num,label_num] / sum(cm[label_num,:]))
|
||||
|
||||
return accuracy, precision, recall
|
||||
|
||||
def print_prediction_metrics(self,cm,accuracy,precision,recall):
|
||||
"""
|
||||
Cette fonction imprime la matrice de confusion et les métriques
|
||||
"""
|
||||
print("Matrice de confusion:")
|
||||
print(cm)
|
||||
print("\nAccuracy:")
|
||||
print(accuracy)
|
||||
print("\nPrecision:")
|
||||
print(precision)
|
||||
print("\nRecall")
|
||||
print(recall)
|
||||
|
||||
# Vous pouvez rajouter d'autres méthodes et fonctions,
|
||||
# il suffit juste de les commenter.
|
90
Code/classifieur.py
Normal file
90
Code/classifieur.py
Normal file
|
@ -0,0 +1,90 @@
|
|||
"""
|
||||
Vous allez definir une classe pour chaque algorithme que vous allez développer,
|
||||
votre classe doit contenit au moins les 3 methodes definies ici bas,
|
||||
* train : pour entrainer le modèle sur l'ensemble d'entrainement
|
||||
* predict : pour prédire la classe d'un exemple donné
|
||||
* test : pour tester sur l'ensemble de test
|
||||
vous pouvez rajouter d'autres méthodes qui peuvent vous etre utiles, mais moi
|
||||
je vais avoir besoin de tester les méthodes test, predict et test de votre code.
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
# le nom de votre classe
|
||||
# BayesNaif pour le modèle bayesien naif
|
||||
# Knn pour le modèle des k plus proches voisins
|
||||
|
||||
class Classifier: #nom de la class à changer
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
"""
|
||||
c'est un Initializer.
|
||||
Vous pouvez passer d'autre paramètres au besoin,
|
||||
c'est à vous d'utiliser vos propres notations
|
||||
"""
|
||||
|
||||
|
||||
def train(self, train, train_labels): #vous pouvez rajouter d'autres attribus au besoin
|
||||
"""
|
||||
c'est la méthode qui va entrainer votre modèle,
|
||||
train est une matrice de type Numpy et de taille nxm, avec
|
||||
n : le nombre d'exemple d'entrainement dans le dataset
|
||||
m : le mobre d'attribus (le nombre de caractéristiques)
|
||||
|
||||
train_labels : est une matrice numpy de taille nx1
|
||||
|
||||
vous pouvez rajouter d'autres arguments, il suffit juste de
|
||||
les expliquer en commentaire
|
||||
|
||||
|
||||
|
||||
------------
|
||||
Après avoir fait l'entrainement, faites maintenant le test sur
|
||||
les données d'entrainement
|
||||
IMPORTANT :
|
||||
Vous devez afficher ici avec la commande print() de python,
|
||||
- la matrice de confision (confusion matrix)
|
||||
- l'accuracy
|
||||
- la précision (precision)
|
||||
- le rappel (recall)
|
||||
|
||||
Bien entendu ces tests doivent etre faits sur les données d'entrainement
|
||||
nous allons faire d'autres tests sur les données de test dans la méthode test()
|
||||
"""
|
||||
|
||||
def predict(self, exemple, label):
|
||||
"""
|
||||
Prédire la classe d'un exemple donné en entrée
|
||||
exemple est de taille 1xm
|
||||
|
||||
si la valeur retournée est la meme que la veleur dans label
|
||||
alors l'exemple est bien classifié, si non c'est une missclassification
|
||||
|
||||
"""
|
||||
|
||||
def test(self, test, test_labels):
|
||||
"""
|
||||
c'est la méthode qui va tester votre modèle sur les données de test
|
||||
l'argument test est une matrice de type Numpy et de taille nxm, avec
|
||||
n : le nombre d'exemple de test dans le dataset
|
||||
m : le mobre d'attribus (le nombre de caractéristiques)
|
||||
|
||||
test_labels : est une matrice numpy de taille nx1
|
||||
|
||||
vous pouvez rajouter d'autres arguments, il suffit juste de
|
||||
les expliquer en commentaire
|
||||
|
||||
Faites le test sur les données de test, et afficher :
|
||||
- la matrice de confision (confusion matrix)
|
||||
- l'accuracy
|
||||
- la précision (precision)
|
||||
- le rappel (recall)
|
||||
|
||||
Bien entendu ces tests doivent etre faits sur les données de test seulement
|
||||
|
||||
"""
|
||||
|
||||
|
||||
# Vous pouvez rajouter d'autres méthodes et fonctions,
|
||||
# il suffit juste de les commenter.
|
151
Code/datasets/bezdekIris.data
Normal file
151
Code/datasets/bezdekIris.data
Normal file
|
@ -0,0 +1,151 @@
|
|||
5.1,3.5,1.4,0.2,Iris-setosa
|
||||
4.9,3.0,1.4,0.2,Iris-setosa
|
||||
4.7,3.2,1.3,0.2,Iris-setosa
|
||||
4.6,3.1,1.5,0.2,Iris-setosa
|
||||
5.0,3.6,1.4,0.2,Iris-setosa
|
||||
5.4,3.9,1.7,0.4,Iris-setosa
|
||||
4.6,3.4,1.4,0.3,Iris-setosa
|
||||
5.0,3.4,1.5,0.2,Iris-setosa
|
||||
4.4,2.9,1.4,0.2,Iris-setosa
|
||||
4.9,3.1,1.5,0.1,Iris-setosa
|
||||
5.4,3.7,1.5,0.2,Iris-setosa
|
||||
4.8,3.4,1.6,0.2,Iris-setosa
|
||||
4.8,3.0,1.4,0.1,Iris-setosa
|
||||
4.3,3.0,1.1,0.1,Iris-setosa
|
||||
5.8,4.0,1.2,0.2,Iris-setosa
|
||||
5.7,4.4,1.5,0.4,Iris-setosa
|
||||
5.4,3.9,1.3,0.4,Iris-setosa
|
||||
5.1,3.5,1.4,0.3,Iris-setosa
|
||||
5.7,3.8,1.7,0.3,Iris-setosa
|
||||
5.1,3.8,1.5,0.3,Iris-setosa
|
||||
5.4,3.4,1.7,0.2,Iris-setosa
|
||||
5.1,3.7,1.5,0.4,Iris-setosa
|
||||
4.6,3.6,1.0,0.2,Iris-setosa
|
||||
5.1,3.3,1.7,0.5,Iris-setosa
|
||||
4.8,3.4,1.9,0.2,Iris-setosa
|
||||
5.0,3.0,1.6,0.2,Iris-setosa
|
||||
5.0,3.4,1.6,0.4,Iris-setosa
|
||||
5.2,3.5,1.5,0.2,Iris-setosa
|
||||
5.2,3.4,1.4,0.2,Iris-setosa
|
||||
4.7,3.2,1.6,0.2,Iris-setosa
|
||||
4.8,3.1,1.6,0.2,Iris-setosa
|
||||
5.4,3.4,1.5,0.4,Iris-setosa
|
||||
5.2,4.1,1.5,0.1,Iris-setosa
|
||||
5.5,4.2,1.4,0.2,Iris-setosa
|
||||
4.9,3.1,1.5,0.2,Iris-setosa
|
||||
5.0,3.2,1.2,0.2,Iris-setosa
|
||||
5.5,3.5,1.3,0.2,Iris-setosa
|
||||
4.9,3.6,1.4,0.1,Iris-setosa
|
||||
4.4,3.0,1.3,0.2,Iris-setosa
|
||||
5.1,3.4,1.5,0.2,Iris-setosa
|
||||
5.0,3.5,1.3,0.3,Iris-setosa
|
||||
4.5,2.3,1.3,0.3,Iris-setosa
|
||||
4.4,3.2,1.3,0.2,Iris-setosa
|
||||
5.0,3.5,1.6,0.6,Iris-setosa
|
||||
5.1,3.8,1.9,0.4,Iris-setosa
|
||||
4.8,3.0,1.4,0.3,Iris-setosa
|
||||
5.1,3.8,1.6,0.2,Iris-setosa
|
||||
4.6,3.2,1.4,0.2,Iris-setosa
|
||||
5.3,3.7,1.5,0.2,Iris-setosa
|
||||
5.0,3.3,1.4,0.2,Iris-setosa
|
||||
7.0,3.2,4.7,1.4,Iris-versicolor
|
||||
6.4,3.2,4.5,1.5,Iris-versicolor
|
||||
6.9,3.1,4.9,1.5,Iris-versicolor
|
||||
5.5,2.3,4.0,1.3,Iris-versicolor
|
||||
6.5,2.8,4.6,1.5,Iris-versicolor
|
||||
5.7,2.8,4.5,1.3,Iris-versicolor
|
||||
6.3,3.3,4.7,1.6,Iris-versicolor
|
||||
4.9,2.4,3.3,1.0,Iris-versicolor
|
||||
6.6,2.9,4.6,1.3,Iris-versicolor
|
||||
5.2,2.7,3.9,1.4,Iris-versicolor
|
||||
5.0,2.0,3.5,1.0,Iris-versicolor
|
||||
5.9,3.0,4.2,1.5,Iris-versicolor
|
||||
6.0,2.2,4.0,1.0,Iris-versicolor
|
||||
6.1,2.9,4.7,1.4,Iris-versicolor
|
||||
5.6,2.9,3.6,1.3,Iris-versicolor
|
||||
6.7,3.1,4.4,1.4,Iris-versicolor
|
||||
5.6,3.0,4.5,1.5,Iris-versicolor
|
||||
5.8,2.7,4.1,1.0,Iris-versicolor
|
||||
6.2,2.2,4.5,1.5,Iris-versicolor
|
||||
5.6,2.5,3.9,1.1,Iris-versicolor
|
||||
5.9,3.2,4.8,1.8,Iris-versicolor
|
||||
6.1,2.8,4.0,1.3,Iris-versicolor
|
||||
6.3,2.5,4.9,1.5,Iris-versicolor
|
||||
6.1,2.8,4.7,1.2,Iris-versicolor
|
||||
6.4,2.9,4.3,1.3,Iris-versicolor
|
||||
6.6,3.0,4.4,1.4,Iris-versicolor
|
||||
6.8,2.8,4.8,1.4,Iris-versicolor
|
||||
6.7,3.0,5.0,1.7,Iris-versicolor
|
||||
6.0,2.9,4.5,1.5,Iris-versicolor
|
||||
5.7,2.6,3.5,1.0,Iris-versicolor
|
||||
5.5,2.4,3.8,1.1,Iris-versicolor
|
||||
5.5,2.4,3.7,1.0,Iris-versicolor
|
||||
5.8,2.7,3.9,1.2,Iris-versicolor
|
||||
6.0,2.7,5.1,1.6,Iris-versicolor
|
||||
5.4,3.0,4.5,1.5,Iris-versicolor
|
||||
6.0,3.4,4.5,1.6,Iris-versicolor
|
||||
6.7,3.1,4.7,1.5,Iris-versicolor
|
||||
6.3,2.3,4.4,1.3,Iris-versicolor
|
||||
5.6,3.0,4.1,1.3,Iris-versicolor
|
||||
5.5,2.5,4.0,1.3,Iris-versicolor
|
||||
5.5,2.6,4.4,1.2,Iris-versicolor
|
||||
6.1,3.0,4.6,1.4,Iris-versicolor
|
||||
5.8,2.6,4.0,1.2,Iris-versicolor
|
||||
5.0,2.3,3.3,1.0,Iris-versicolor
|
||||
5.6,2.7,4.2,1.3,Iris-versicolor
|
||||
5.7,3.0,4.2,1.2,Iris-versicolor
|
||||
5.7,2.9,4.2,1.3,Iris-versicolor
|
||||
6.2,2.9,4.3,1.3,Iris-versicolor
|
||||
5.1,2.5,3.0,1.1,Iris-versicolor
|
||||
5.7,2.8,4.1,1.3,Iris-versicolor
|
||||
6.3,3.3,6.0,2.5,Iris-virginica
|
||||
5.8,2.7,5.1,1.9,Iris-virginica
|
||||
7.1,3.0,5.9,2.1,Iris-virginica
|
||||
6.3,2.9,5.6,1.8,Iris-virginica
|
||||
6.5,3.0,5.8,2.2,Iris-virginica
|
||||
7.6,3.0,6.6,2.1,Iris-virginica
|
||||
4.9,2.5,4.5,1.7,Iris-virginica
|
||||
7.3,2.9,6.3,1.8,Iris-virginica
|
||||
6.7,2.5,5.8,1.8,Iris-virginica
|
||||
7.2,3.6,6.1,2.5,Iris-virginica
|
||||
6.5,3.2,5.1,2.0,Iris-virginica
|
||||
6.4,2.7,5.3,1.9,Iris-virginica
|
||||
6.8,3.0,5.5,2.1,Iris-virginica
|
||||
5.7,2.5,5.0,2.0,Iris-virginica
|
||||
5.8,2.8,5.1,2.4,Iris-virginica
|
||||
6.4,3.2,5.3,2.3,Iris-virginica
|
||||
6.5,3.0,5.5,1.8,Iris-virginica
|
||||
7.7,3.8,6.7,2.2,Iris-virginica
|
||||
7.7,2.6,6.9,2.3,Iris-virginica
|
||||
6.0,2.2,5.0,1.5,Iris-virginica
|
||||
6.9,3.2,5.7,2.3,Iris-virginica
|
||||
5.6,2.8,4.9,2.0,Iris-virginica
|
||||
7.7,2.8,6.7,2.0,Iris-virginica
|
||||
6.3,2.7,4.9,1.8,Iris-virginica
|
||||
6.7,3.3,5.7,2.1,Iris-virginica
|
||||
7.2,3.2,6.0,1.8,Iris-virginica
|
||||
6.2,2.8,4.8,1.8,Iris-virginica
|
||||
6.1,3.0,4.9,1.8,Iris-virginica
|
||||
6.4,2.8,5.6,2.1,Iris-virginica
|
||||
7.2,3.0,5.8,1.6,Iris-virginica
|
||||
7.4,2.8,6.1,1.9,Iris-virginica
|
||||
7.9,3.8,6.4,2.0,Iris-virginica
|
||||
6.4,2.8,5.6,2.2,Iris-virginica
|
||||
6.3,2.8,5.1,1.5,Iris-virginica
|
||||
6.1,2.6,5.6,1.4,Iris-virginica
|
||||
7.7,3.0,6.1,2.3,Iris-virginica
|
||||
6.3,3.4,5.6,2.4,Iris-virginica
|
||||
6.4,3.1,5.5,1.8,Iris-virginica
|
||||
6.0,3.0,4.8,1.8,Iris-virginica
|
||||
6.9,3.1,5.4,2.1,Iris-virginica
|
||||
6.7,3.1,5.6,2.4,Iris-virginica
|
||||
6.9,3.1,5.1,2.3,Iris-virginica
|
||||
5.8,2.7,5.1,1.9,Iris-virginica
|
||||
6.8,3.2,5.9,2.3,Iris-virginica
|
||||
6.7,3.3,5.7,2.5,Iris-virginica
|
||||
6.7,3.0,5.2,2.3,Iris-virginica
|
||||
6.3,2.5,5.0,1.9,Iris-virginica
|
||||
6.5,3.0,5.2,2.0,Iris-virginica
|
||||
6.2,3.4,5.4,2.3,Iris-virginica
|
||||
5.9,3.0,5.1,1.8,Iris-virginica
|
||||
|
435
Code/datasets/house-votes-84.data
Normal file
435
Code/datasets/house-votes-84.data
Normal file
|
@ -0,0 +1,435 @@
|
|||
republican,n,y,n,y,y,y,n,n,n,y,?,y,y,y,n,y
|
||||
republican,n,y,n,y,y,y,n,n,n,n,n,y,y,y,n,?
|
||||
democrat,?,y,y,?,y,y,n,n,n,n,y,n,y,y,n,n
|
||||
democrat,n,y,y,n,?,y,n,n,n,n,y,n,y,n,n,y
|
||||
democrat,y,y,y,n,y,y,n,n,n,n,y,?,y,y,y,y
|
||||
democrat,n,y,y,n,y,y,n,n,n,n,n,n,y,y,y,y
|
||||
democrat,n,y,n,y,y,y,n,n,n,n,n,n,?,y,y,y
|
||||
republican,n,y,n,y,y,y,n,n,n,n,n,n,y,y,?,y
|
||||
republican,n,y,n,y,y,y,n,n,n,n,n,y,y,y,n,y
|
||||
democrat,y,y,y,n,n,n,y,y,y,n,n,n,n,n,?,?
|
||||
republican,n,y,n,y,y,n,n,n,n,n,?,?,y,y,n,n
|
||||
republican,n,y,n,y,y,y,n,n,n,n,y,?,y,y,?,?
|
||||
democrat,n,y,y,n,n,n,y,y,y,n,n,n,y,n,?,?
|
||||
democrat,y,y,y,n,n,y,y,y,?,y,y,?,n,n,y,?
|
||||
republican,n,y,n,y,y,y,n,n,n,n,n,y,?,?,n,?
|
||||
republican,n,y,n,y,y,y,n,n,n,y,n,y,y,?,n,?
|
||||
democrat,y,n,y,n,n,y,n,y,?,y,y,y,?,n,n,y
|
||||
democrat,y,?,y,n,n,n,y,y,y,n,n,n,y,n,y,y
|
||||
republican,n,y,n,y,y,y,n,n,n,n,n,?,y,y,n,n
|
||||
democrat,y,y,y,n,n,n,y,y,y,n,y,n,n,n,y,y
|
||||
democrat,y,y,y,n,n,?,y,y,n,n,y,n,n,n,y,y
|
||||
democrat,y,y,y,n,n,n,y,y,y,n,n,n,?,?,y,y
|
||||
democrat,y,?,y,n,n,n,y,y,y,n,n,?,n,n,y,y
|
||||
democrat,y,y,y,n,n,n,y,y,y,n,n,n,n,n,y,y
|
||||
democrat,y,n,y,n,n,n,y,y,y,n,n,n,n,n,y,?
|
||||
democrat,y,n,y,n,n,n,y,y,y,y,n,n,n,n,y,y
|
||||
democrat,y,n,y,n,n,n,y,y,y,n,y,n,n,n,y,y
|
||||
democrat,y,y,y,n,n,n,y,y,y,n,y,n,n,n,y,y
|
||||
republican,y,n,n,y,y,n,y,y,y,n,n,y,y,y,n,y
|
||||
democrat,y,y,y,n,n,n,y,y,y,n,y,n,n,n,y,y
|
||||
republican,n,y,n,y,y,y,n,n,n,n,n,y,y,y,n,n
|
||||
democrat,y,y,y,n,n,n,y,y,y,n,y,n,n,n,y,?
|
||||
democrat,y,y,y,n,n,n,y,y,y,y,n,n,y,n,y,y
|
||||
republican,n,y,n,y,y,y,n,n,n,n,n,y,y,y,n,y
|
||||
democrat,y,y,y,n,n,n,y,y,y,n,n,n,n,n,y,y
|
||||
republican,n,y,n,y,y,y,n,n,n,n,n,y,y,y,n,n
|
||||
republican,y,?,n,y,y,y,n,n,n,y,n,y,?,y,n,y
|
||||
republican,y,y,n,y,y,y,n,n,n,n,n,n,y,y,n,y
|
||||
republican,n,y,n,y,y,y,n,n,n,y,n,y,y,y,n,n
|
||||
democrat,y,n,y,n,n,n,y,y,y,y,y,n,y,n,y,y
|
||||
democrat,y,y,y,n,n,n,y,y,y,n,?,n,n,n,n,?
|
||||
democrat,y,y,y,n,n,n,y,y,y,n,n,n,n,n,y,?
|
||||
democrat,y,n,y,n,n,n,y,y,y,n,n,n,n,n,n,y
|
||||
democrat,y,n,y,n,n,n,y,y,y,n,n,n,n,n,y,y
|
||||
democrat,y,y,y,n,n,n,y,y,y,n,y,n,n,n,n,?
|
||||
democrat,y,y,y,n,n,n,y,y,?,n,y,n,n,n,y,?
|
||||
democrat,y,y,y,n,n,n,y,y,y,n,n,n,n,n,n,y
|
||||
democrat,y,n,y,n,n,n,y,y,?,n,n,n,n,n,n,?
|
||||
democrat,y,y,y,n,n,n,y,y,n,n,n,n,n,y,n,y
|
||||
republican,n,?,n,y,y,y,n,n,n,n,n,y,y,y,n,n
|
||||
democrat,y,y,y,n,n,n,y,y,y,n,y,n,n,n,y,y
|
||||
republican,n,y,n,y,y,y,n,?,n,n,n,y,y,y,n,y
|
||||
democrat,y,y,y,n,n,n,y,y,y,n,n,n,n,n,?,?
|
||||
republican,y,y,n,y,y,y,n,n,n,y,n,y,y,y,n,n
|
||||
democrat,y,y,y,n,n,y,?,y,n,n,y,y,n,y,n,?
|
||||
republican,n,y,n,y,y,y,n,n,n,y,y,y,y,y,n,n
|
||||
republican,n,y,n,y,y,y,n,n,n,y,y,y,y,y,n,y
|
||||
republican,n,y,n,y,y,y,n,n,n,y,n,y,y,y,n,y
|
||||
republican,n,y,n,y,y,y,n,n,n,y,n,y,y,y,n,y
|
||||
republican,n,y,n,y,y,y,n,n,n,y,n,y,y,y,n,?
|
||||
democrat,y,y,y,n,n,?,y,y,y,y,n,n,n,n,y,?
|
||||
republican,n,y,n,y,y,y,n,n,n,n,n,y,y,y,n,n
|
||||
democrat,y,y,y,n,n,n,y,y,y,n,n,n,n,n,n,?
|
||||
democrat,y,y,y,n,n,n,y,y,y,n,y,n,n,n,n,y
|
||||
democrat,y,y,y,n,n,n,y,y,y,n,y,?,n,n,n,y
|
||||
republican,y,y,n,y,y,y,y,n,n,n,n,y,y,y,n,y
|
||||
republican,n,y,n,y,y,y,y,n,n,n,y,y,y,y,n,y
|
||||
republican,n,y,n,y,y,y,n,n,n,y,n,y,y,y,n,n
|
||||
democrat,y,?,y,n,n,n,y,y,y,n,n,n,y,n,y,y
|
||||
democrat,y,y,y,n,n,n,y,y,y,n,n,n,n,n,y,y
|
||||
democrat,y,n,y,n,n,n,y,y,y,n,n,n,y,n,y,?
|
||||
republican,y,y,y,y,n,n,y,y,y,y,y,n,n,y,n,y
|
||||
democrat,y,y,y,n,n,n,y,y,y,n,y,n,n,n,y,?
|
||||
republican,y,n,y,y,y,n,y,n,y,y,n,n,y,y,n,y
|
||||
democrat,y,n,y,n,n,y,y,y,y,y,y,n,n,y,y,y
|
||||
democrat,n,y,y,y,y,y,n,n,n,y,y,n,y,y,n,n
|
||||
democrat,n,y,y,n,y,y,n,n,n,y,y,y,y,y,n,?
|
||||
democrat,n,y,y,y,y,y,n,y,y,y,y,y,y,y,n,y
|
||||
democrat,y,y,y,n,y,y,n,n,n,y,y,n,y,y,n,y
|
||||
republican,n,n,n,y,y,n,n,n,n,y,n,y,y,y,n,n
|
||||
democrat,y,n,y,n,n,y,y,y,y,y,n,y,n,y,n,?
|
||||
democrat,y,n,y,n,n,n,y,y,?,y,y,y,n,y,n,y
|
||||
republican,n,n,n,y,y,y,n,n,n,y,n,y,y,y,n,y
|
||||
republican,n,n,n,y,y,y,n,n,n,n,n,y,y,y,n,n
|
||||
republican,n,?,n,y,y,y,n,n,n,y,n,y,y,y,n,n
|
||||
democrat,n,n,y,n,y,y,n,n,n,y,y,y,y,y,n,y
|
||||
republican,n,n,n,y,y,y,n,n,n,y,n,y,y,y,n,n
|
||||
republican,n,n,n,y,y,y,n,n,n,n,n,y,y,y,n,n
|
||||
democrat,n,y,y,n,y,y,y,n,y,y,y,n,y,y,n,y
|
||||
republican,n,n,n,y,y,y,n,n,n,y,n,?,y,y,n,?
|
||||
democrat,y,n,y,n,n,n,y,y,y,y,n,n,n,n,y,y
|
||||
democrat,y,n,y,n,n,n,y,y,y,y,y,n,n,n,y,y
|
||||
democrat,y,y,y,n,n,n,y,y,n,y,y,n,n,?,y,y
|
||||
democrat,y,n,y,n,n,n,y,n,y,y,y,n,n,n,y,y
|
||||
democrat,y,n,y,n,y,y,n,n,n,n,n,n,n,n,n,y
|
||||
democrat,y,n,y,n,y,y,n,?,?,n,y,?,?,?,y,y
|
||||
democrat,n,n,?,n,y,y,n,n,n,n,y,y,y,y,n,y
|
||||
democrat,y,n,n,n,y,y,y,n,n,y,y,n,n,y,n,y
|
||||
democrat,y,y,y,n,n,y,y,y,y,y,n,n,n,n,n,y
|
||||
republican,n,n,n,y,y,y,n,n,n,y,?,y,y,y,n,n
|
||||
democrat,y,n,n,n,y,y,n,n,n,n,y,y,n,y,n,y
|
||||
democrat,y,n,y,n,y,y,y,n,n,n,y,n,n,y,n,y
|
||||
democrat,y,n,y,n,y,y,y,n,?,n,y,n,y,y,y,?
|
||||
democrat,y,n,n,n,y,y,?,n,?,n,n,n,n,y,?,n
|
||||
democrat,?,?,?,?,n,y,y,y,y,y,?,n,y,y,n,?
|
||||
democrat,y,y,y,n,n,n,n,y,y,n,y,n,n,n,y,y
|
||||
republican,n,y,n,y,y,y,n,n,n,n,n,y,y,y,n,y
|
||||
republican,n,?,?,?,?,?,?,?,?,?,?,?,?,y,?,?
|
||||
democrat,y,?,y,n,n,n,y,y,y,n,n,n,n,n,y,?
|
||||
democrat,y,?,y,n,n,n,y,y,y,n,n,n,n,n,y,?
|
||||
democrat,n,n,y,n,n,n,y,y,y,y,n,n,n,n,y,y
|
||||
republican,n,?,n,y,y,y,n,n,n,y,n,y,y,y,n,y
|
||||
democrat,n,?,y,n,n,y,y,y,n,y,n,n,n,n,y,?
|
||||
republican,n,?,n,y,y,y,n,n,n,y,n,y,y,y,n,n
|
||||
democrat,y,?,y,n,n,n,y,y,y,n,n,n,n,n,y,?
|
||||
democrat,n,?,y,n,?,?,y,y,y,y,?,?,n,n,y,y
|
||||
democrat,y,n,y,n,n,n,y,y,y,n,y,n,n,n,y,y
|
||||
republican,y,y,y,y,y,n,y,n,n,n,n,y,y,y,n,y
|
||||
democrat,n,y,y,n,n,n,n,y,y,y,y,n,n,n,y,y
|
||||
republican,n,n,n,y,y,y,n,n,n,n,n,y,y,y,n,n
|
||||
republican,n,?,?,y,y,y,n,n,n,y,n,y,y,y,?,y
|
||||
republican,n,?,n,y,y,y,n,n,n,y,n,y,y,y,n,y
|
||||
republican,n,n,n,y,y,y,n,n,n,y,n,y,n,y,n,y
|
||||
republican,y,?,n,y,y,y,n,y,n,n,n,y,y,y,n,y
|
||||
democrat,n,?,y,n,n,n,y,y,y,n,n,n,n,n,y,y
|
||||
republican,n,?,n,y,y,y,n,n,n,y,n,y,y,y,n,y
|
||||
republican,n,?,n,y,y,y,n,n,n,n,n,y,y,y,n,n
|
||||
democrat,n,?,y,n,n,n,y,y,y,y,y,n,n,y,y,y
|
||||
democrat,n,?,y,n,n,y,n,y,n,y,y,n,n,n,y,y
|
||||
democrat,?,?,y,n,n,n,y,y,?,n,?,?,?,?,?,?
|
||||
democrat,y,?,y,n,?,?,y,y,y,n,n,n,n,n,y,?
|
||||
democrat,n,n,y,n,n,y,n,y,y,y,n,n,n,y,n,y
|
||||
republican,n,n,n,y,y,y,n,n,n,y,n,y,y,y,n,?
|
||||
republican,n,n,n,y,y,y,n,n,n,y,n,y,y,y,n,y
|
||||
republican,n,n,n,y,y,y,n,n,n,n,n,y,y,y,n,?
|
||||
republican,n,n,n,y,y,y,n,n,n,y,n,y,y,y,n,n
|
||||
republican,n,y,n,y,y,y,n,n,n,y,y,y,y,n,n,y
|
||||
democrat,n,?,y,n,n,y,y,y,y,y,n,n,n,y,y,y
|
||||
democrat,n,n,y,n,n,y,y,y,y,y,n,n,n,y,n,y
|
||||
democrat,y,n,y,n,n,y,y,y,y,n,n,n,n,n,y,y
|
||||
republican,n,n,n,y,n,n,y,y,y,y,n,n,y,y,n,y
|
||||
republican,n,n,n,y,y,y,y,y,y,y,n,y,y,y,?,y
|
||||
republican,n,n,n,y,y,y,y,y,y,y,n,y,y,y,n,y
|
||||
democrat,?,y,n,n,n,n,y,y,y,y,y,n,n,y,y,y
|
||||
democrat,n,?,n,n,n,y,y,y,y,y,n,n,n,y,n,?
|
||||
democrat,n,n,y,n,n,y,y,y,y,y,n,n,n,y,?,y
|
||||
republican,n,y,n,y,y,y,n,n,n,n,n,y,y,y,n,y
|
||||
democrat,n,n,n,n,n,n,y,y,y,y,n,y,y,y,y,y
|
||||
republican,n,y,n,y,y,y,n,n,n,y,y,y,y,y,n,y
|
||||
democrat,n,n,y,n,n,n,y,y,y,y,n,n,y,n,y,y
|
||||
republican,y,y,n,y,y,y,n,n,n,y,n,y,y,y,n,y
|
||||
democrat,y,y,?,y,y,y,n,n,y,n,y,?,y,y,n,n
|
||||
democrat,n,y,y,n,n,y,n,y,y,y,y,n,y,n,y,y
|
||||
democrat,n,n,y,n,n,y,y,y,y,y,y,n,y,y,n,y
|
||||
republican,n,y,n,y,y,y,n,n,n,n,n,y,y,y,n,n
|
||||
republican,y,y,n,y,y,y,n,?,n,n,y,y,y,y,n,n
|
||||
republican,y,y,n,y,y,y,y,n,n,n,n,y,y,y,n,n
|
||||
democrat,n,y,y,n,n,y,n,y,y,n,y,n,?,?,?,?
|
||||
republican,n,y,n,y,y,y,n,n,n,y,n,y,y,y,n,n
|
||||
democrat,n,y,y,n,?,y,y,y,y,y,y,n,n,?,n,?
|
||||
democrat,n,y,n,n,y,y,n,n,n,n,n,y,y,y,y,y
|
||||
democrat,n,n,n,n,y,y,y,n,n,n,n,y,y,y,n,y
|
||||
democrat,n,y,y,n,y,y,y,n,n,n,y,y,y,y,n,y
|
||||
republican,n,y,n,y,y,y,y,n,n,n,n,y,y,y,n,y
|
||||
democrat,y,y,n,n,y,y,n,n,n,y,y,y,y,y,n,?
|
||||
democrat,n,y,y,n,n,y,y,y,y,y,y,n,y,n,y,?
|
||||
republican,y,n,y,y,y,y,y,y,n,y,n,y,n,y,y,y
|
||||
republican,y,n,y,y,y,y,y,y,n,y,y,y,n,y,y,y
|
||||
democrat,n,n,y,y,y,y,n,n,y,n,n,n,y,y,y,?
|
||||
democrat,y,n,y,n,n,n,y,y,y,y,y,n,n,y,n,y
|
||||
democrat,y,n,y,n,n,n,?,y,y,?,n,n,n,n,y,?
|
||||
republican,n,?,n,y,y,y,n,n,n,y,n,y,y,y,n,y
|
||||
democrat,n,y,y,n,n,n,y,y,y,y,n,n,?,n,y,y
|
||||
democrat,n,n,n,n,y,y,n,n,n,y,y,y,y,y,n,y
|
||||
democrat,y,?,y,n,n,n,y,y,y,n,n,n,n,n,y,?
|
||||
democrat,n,y,y,n,n,n,y,y,y,y,n,n,n,n,y,y
|
||||
republican,n,n,y,y,n,n,y,y,y,y,n,n,n,y,y,y
|
||||
democrat,n,n,y,n,n,n,y,y,y,y,y,?,n,n,y,y
|
||||
democrat,?,n,y,n,n,n,y,y,y,y,y,?,n,n,y,?
|
||||
democrat,y,n,y,n,n,n,y,y,y,y,n,n,n,n,y,y
|
||||
democrat,?,?,y,n,n,n,y,y,y,?,?,n,n,n,?,?
|
||||
democrat,n,n,y,n,n,n,y,y,y,y,y,n,n,n,y,y
|
||||
democrat,y,?,y,n,n,n,y,y,y,n,n,n,n,n,y,y
|
||||
democrat,?,?,?,?,?,?,?,?,y,?,?,?,?,?,?,?
|
||||
democrat,n,n,y,n,n,n,y,y,y,y,y,n,n,n,y,y
|
||||
democrat,y,n,y,n,n,n,y,y,y,y,n,?,n,n,y,y
|
||||
democrat,n,y,y,n,n,n,y,y,y,y,y,n,n,n,y,y
|
||||
democrat,y,n,y,n,n,n,y,y,y,n,n,n,n,n,y,?
|
||||
republican,y,?,n,y,y,y,y,y,n,n,n,y,?,y,?,?
|
||||
democrat,y,n,y,n,n,n,y,y,y,n,n,n,n,n,y,y
|
||||
republican,n,?,n,y,y,y,n,n,n,n,n,y,y,y,n,?
|
||||
republican,n,y,n,y,y,y,n,?,n,y,n,y,y,y,n,?
|
||||
democrat,n,n,n,n,n,y,y,y,y,n,y,n,n,y,y,y
|
||||
democrat,n,n,y,n,n,n,y,y,y,n,n,n,n,n,y,y
|
||||
democrat,n,n,y,n,n,y,y,?,y,y,y,n,n,n,y,y
|
||||
republican,n,n,n,y,y,y,n,n,n,n,n,y,y,y,n,?
|
||||
democrat,n,n,y,n,n,y,y,y,y,n,y,y,n,y,y,?
|
||||
republican,n,?,y,y,y,y,n,n,n,y,n,n,n,y,n,y
|
||||
democrat,n,n,y,n,n,n,y,y,y,y,y,n,?,n,y,?
|
||||
democrat,y,y,n,n,n,n,y,y,?,n,y,n,n,n,y,?
|
||||
democrat,n,n,y,n,n,n,y,y,y,n,n,n,n,y,y,y
|
||||
democrat,y,y,y,n,n,n,y,y,y,n,n,n,n,n,y,y
|
||||
democrat,y,n,y,n,n,y,y,y,y,y,y,n,n,n,y,y
|
||||
democrat,y,n,y,n,n,n,y,y,y,y,n,n,n,n,y,y
|
||||
republican,n,n,y,y,y,y,y,n,n,n,n,y,y,y,n,y
|
||||
democrat,n,n,y,n,n,y,y,y,y,y,n,y,n,n,n,y
|
||||
republican,n,n,n,y,y,y,n,n,n,y,n,y,n,y,n,y
|
||||
republican,y,?,n,y,y,y,y,n,n,y,n,y,y,y,n,y
|
||||
democrat,n,n,y,n,n,n,y,y,y,n,n,?,n,n,y,y
|
||||
democrat,y,y,y,n,n,n,y,y,y,y,y,n,n,n,n,y
|
||||
democrat,n,n,y,n,n,y,y,y,y,n,n,n,n,n,y,y
|
||||
republican,n,y,n,y,y,y,n,n,n,y,n,y,y,y,n,y
|
||||
democrat,n,n,y,n,n,n,y,y,y,n,y,n,n,n,y,y
|
||||
democrat,n,y,y,n,n,y,n,y,y,n,y,n,y,n,y,y
|
||||
republican,y,y,n,y,y,y,n,n,n,y,n,y,y,y,n,y
|
||||
democrat,n,y,y,y,y,y,n,n,n,y,y,y,y,y,y,?
|
||||
democrat,y,y,y,n,y,y,n,n,?,y,n,n,n,y,y,?
|
||||
republican,n,y,n,y,y,y,n,n,n,y,n,y,y,y,n,n
|
||||
democrat,y,?,y,n,n,n,y,y,y,n,?,n,n,n,y,?
|
||||
democrat,n,y,y,n,n,n,n,y,y,n,y,n,n,y,y,y
|
||||
democrat,n,n,y,n,n,n,y,y,y,n,n,n,n,n,y,?
|
||||
democrat,n,y,y,n,y,y,n,n,n,n,y,n,n,n,y,?
|
||||
democrat,y,n,y,n,n,n,y,y,y,n,y,n,n,n,y,?
|
||||
republican,n,n,n,y,y,n,n,n,n,n,n,y,y,y,n,y
|
||||
republican,n,y,n,y,y,y,n,n,n,y,n,?,y,y,n,n
|
||||
republican,n,?,n,y,y,y,n,n,n,n,n,y,y,y,n,y
|
||||
democrat,n,n,y,n,n,y,y,y,y,n,y,n,n,y,y,y
|
||||
democrat,y,n,y,n,n,n,y,y,y,n,n,n,n,n,?,y
|
||||
republican,n,y,n,y,y,y,n,n,n,n,n,y,y,?,n,y
|
||||
republican,n,y,y,y,y,y,y,n,y,y,n,y,y,y,n,y
|
||||
republican,n,y,n,y,y,y,n,n,n,n,n,y,y,y,n,y
|
||||
republican,n,y,n,y,y,y,n,n,y,y,n,y,y,y,n,y
|
||||
democrat,n,y,y,n,n,n,y,y,n,n,y,n,n,n,y,?
|
||||
republican,n,y,n,y,y,y,n,n,n,y,n,y,y,y,n,y
|
||||
democrat,n,n,y,n,n,y,y,y,y,y,n,y,n,y,y,?
|
||||
republican,n,n,n,y,y,y,n,n,n,y,n,y,n,y,n,y
|
||||
democrat,n,n,y,n,n,n,y,y,y,n,n,n,n,n,y,y
|
||||
democrat,y,n,y,n,n,y,y,y,n,n,n,y,y,n,n,y
|
||||
democrat,y,y,y,n,n,n,y,y,?,y,n,n,n,n,y,?
|
||||
republican,n,n,n,y,y,y,y,n,n,y,n,n,n,y,y,y
|
||||
republican,n,n,n,y,n,y,y,?,y,n,n,y,y,y,n,y
|
||||
democrat,y,n,y,n,n,n,y,y,y,y,y,n,n,y,y,y
|
||||
republican,n,n,n,n,y,y,y,n,n,n,n,?,n,y,y,y
|
||||
democrat,n,y,y,n,n,n,y,y,?,y,n,n,y,n,y,y
|
||||
democrat,y,n,y,n,n,n,n,y,y,y,n,n,n,n,y,y
|
||||
democrat,y,n,y,n,n,n,y,y,y,y,y,n,n,n,y,y
|
||||
democrat,n,n,y,n,y,n,y,y,y,n,n,n,n,y,?,y
|
||||
republican,n,y,n,y,y,y,?,n,n,n,n,?,y,y,n,n
|
||||
republican,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?
|
||||
democrat,y,n,y,n,n,n,y,y,?,n,y,n,n,n,y,y
|
||||
republican,n,y,n,y,y,y,n,n,n,n,n,y,y,y,n,n
|
||||
republican,n,y,n,y,y,y,n,n,n,n,n,y,y,y,n,n
|
||||
democrat,y,y,y,n,n,y,y,y,y,n,n,n,n,n,y,y
|
||||
republican,n,y,n,y,y,y,n,n,n,n,n,y,y,y,n,y
|
||||
democrat,y,n,y,n,n,n,y,y,y,y,n,n,n,n,n,y
|
||||
democrat,y,n,y,n,n,n,y,y,y,y,n,n,n,y,y,y
|
||||
republican,n,n,n,y,y,n,n,n,n,n,n,y,n,y,n,n
|
||||
republican,n,n,n,y,y,n,n,n,n,n,n,y,n,y,?,y
|
||||
democrat,n,n,y,n,n,n,y,y,y,n,y,n,n,n,y,y
|
||||
democrat,y,n,y,n,n,n,y,y,y,n,n,n,n,n,n,y
|
||||
democrat,y,n,y,n,n,n,y,y,y,y,n,n,n,n,n,y
|
||||
democrat,y,n,y,n,n,?,y,y,y,n,?,?,n,?,?,?
|
||||
democrat,y,n,y,n,n,n,y,y,y,y,n,n,?,n,y,y
|
||||
democrat,y,n,y,n,n,n,y,y,y,n,n,n,n,n,y,?
|
||||
democrat,y,n,y,n,n,n,y,y,y,n,n,n,n,n,y,?
|
||||
democrat,y,n,y,n,n,n,y,y,y,y,n,n,n,n,n,y
|
||||
republican,n,n,n,y,y,y,n,n,n,y,n,y,n,y,n,y
|
||||
republican,y,n,n,n,n,n,y,y,y,y,n,n,n,y,n,y
|
||||
democrat,y,n,y,n,n,n,y,y,y,n,n,n,n,n,y,?
|
||||
democrat,y,n,y,n,n,n,y,y,y,n,n,n,n,n,n,y
|
||||
democrat,y,y,y,n,n,n,y,y,y,n,n,n,n,n,y,y
|
||||
democrat,n,y,y,n,n,y,y,y,y,n,?,n,n,n,n,y
|
||||
democrat,y,n,y,n,n,n,y,y,y,y,n,n,n,n,y,?
|
||||
republican,n,n,n,y,y,n,y,y,n,y,n,y,y,y,?,y
|
||||
republican,y,n,n,y,y,n,y,n,n,y,n,n,n,y,y,y
|
||||
democrat,n,n,y,n,y,y,n,n,n,n,?,n,y,y,n,n
|
||||
republican,n,n,n,y,y,y,n,n,n,n,n,y,y,y,y,n
|
||||
republican,n,n,y,y,y,y,y,y,n,y,n,n,n,y,n,y
|
||||
republican,n,n,n,y,y,y,n,n,n,n,n,y,y,y,n,y
|
||||
republican,n,n,n,y,y,y,n,n,n,y,n,y,y,y,n,n
|
||||
democrat,n,n,y,n,n,n,y,y,y,y,n,n,n,y,n,y
|
||||
republican,y,n,y,y,y,y,y,y,n,n,n,n,n,y,n,?
|
||||
republican,y,n,n,y,y,y,n,n,n,y,n,?,y,y,n,n
|
||||
republican,n,n,n,y,y,y,n,n,n,n,n,y,y,y,n,y
|
||||
democrat,n,n,y,n,n,y,y,y,y,y,y,n,n,n,?,y
|
||||
democrat,n,n,y,n,n,y,y,y,y,y,y,n,n,n,y,y
|
||||
democrat,n,n,y,n,n,y,?,y,?,y,y,y,n,y,y,?
|
||||
democrat,y,y,y,?,n,y,y,y,y,n,y,n,y,n,?,y
|
||||
democrat,y,y,y,n,y,y,n,y,n,y,y,n,y,y,y,y
|
||||
democrat,y,y,y,n,y,y,n,y,n,y,y,n,y,y,n,?
|
||||
democrat,y,n,y,n,?,y,?,y,y,y,n,n,y,y,n,y
|
||||
democrat,y,n,y,n,n,y,y,y,y,y,n,?,n,y,n,y
|
||||
democrat,y,n,y,n,n,y,y,y,n,y,y,n,y,y,y,y
|
||||
democrat,y,y,y,n,n,y,y,y,y,y,y,n,y,y,y,y
|
||||
democrat,n,y,y,n,n,y,y,y,n,y,y,n,y,y,n,?
|
||||
republican,n,y,n,y,y,y,?,?,n,y,n,y,?,?,?,?
|
||||
republican,n,n,y,y,y,y,n,n,n,y,n,y,y,y,y,y
|
||||
democrat,y,y,y,n,n,y,y,y,y,y,n,n,?,n,y,?
|
||||
democrat,n,y,n,n,n,n,y,y,y,y,y,n,n,n,y,y
|
||||
democrat,n,y,y,n,n,y,y,y,y,y,n,n,y,y,y,y
|
||||
republican,n,n,n,y,y,n,y,y,y,y,n,y,y,y,n,y
|
||||
democrat,n,n,?,n,n,y,y,y,y,n,n,n,n,n,y,y
|
||||
republican,n,n,n,y,y,y,y,n,n,y,n,y,y,y,n,y
|
||||
republican,n,n,n,y,y,y,n,n,n,n,n,y,y,y,n,n
|
||||
republican,n,y,n,y,y,y,n,n,n,y,n,y,y,y,n,?
|
||||
republican,n,n,n,y,y,y,n,n,n,y,n,y,y,y,n,n
|
||||
republican,n,n,n,y,y,y,n,n,n,n,n,y,y,y,n,n
|
||||
democrat,y,n,y,n,n,y,y,y,y,n,n,n,n,y,n,?
|
||||
republican,n,n,n,y,y,y,n,n,n,y,n,y,y,y,n,n
|
||||
democrat,y,n,n,n,n,y,y,y,y,y,n,n,n,y,y,y
|
||||
republican,n,n,n,y,y,y,n,n,n,y,n,y,y,y,y,n
|
||||
democrat,n,n,y,n,n,y,y,y,y,y,n,n,y,n,n,y
|
||||
democrat,y,y,y,n,n,n,y,y,y,y,n,n,n,n,y,y
|
||||
republican,n,y,y,y,y,y,n,n,n,y,n,y,y,y,n,y
|
||||
republican,n,y,n,y,y,y,y,y,n,n,y,y,y,y,y,y
|
||||
republican,n,y,y,y,y,y,y,?,n,n,n,n,?,?,y,?
|
||||
democrat,n,n,n,n,n,y,n,y,y,n,y,y,y,y,y,n
|
||||
democrat,y,n,n,n,n,n,y,y,y,y,n,n,n,n,y,y
|
||||
democrat,n,n,y,n,n,n,y,y,y,n,n,n,n,n,y,?
|
||||
democrat,y,n,y,n,n,n,y,y,y,n,n,n,n,n,y,?
|
||||
democrat,n,y,y,n,n,y,n,y,y,y,n,n,y,y,n,y
|
||||
democrat,y,y,y,n,n,n,y,y,y,y,n,n,y,n,n,y
|
||||
democrat,y,y,y,n,?,y,n,?,n,n,y,n,y,y,n,?
|
||||
democrat,y,y,y,n,y,y,n,y,?,y,n,n,y,y,n,?
|
||||
republican,n,y,n,y,y,y,n,n,n,n,y,y,y,y,n,n
|
||||
democrat,n,y,n,n,y,y,n,n,?,n,n,y,y,y,n,y
|
||||
democrat,y,y,n,y,n,n,y,y,y,n,y,n,n,y,n,y
|
||||
republican,n,y,n,y,y,y,n,n,n,n,n,y,y,y,n,y
|
||||
democrat,y,y,y,n,n,n,y,y,y,n,y,n,n,n,n,y
|
||||
democrat,y,?,y,n,n,y,y,y,y,y,n,n,n,n,y,?
|
||||
republican,n,y,n,y,y,y,n,n,n,y,n,y,y,y,n,n
|
||||
democrat,y,?,y,n,n,n,y,y,y,n,n,n,n,n,y,?
|
||||
democrat,y,n,y,n,n,n,y,y,y,n,y,n,n,n,y,?
|
||||
democrat,n,n,y,n,n,n,y,y,y,n,n,n,n,n,y,y
|
||||
democrat,n,y,y,n,n,y,y,y,?,n,y,y,n,n,y,y
|
||||
republican,n,n,n,y,y,y,n,n,n,y,y,y,y,y,n,?
|
||||
democrat,n,n,y,n,n,y,y,y,n,n,y,n,n,y,?,y
|
||||
democrat,y,n,y,n,n,n,y,y,y,n,n,n,n,n,y,y
|
||||
democrat,y,n,y,n,n,n,y,y,y,y,n,n,n,y,y,y
|
||||
republican,y,n,n,y,y,y,n,n,n,n,y,y,y,y,n,n
|
||||
republican,n,n,n,y,y,y,n,n,n,y,y,y,n,y,n,y
|
||||
democrat,n,?,y,?,n,y,y,y,y,y,y,n,?,?,y,y
|
||||
democrat,n,y,y,n,y,?,y,n,n,y,y,n,y,n,y,y
|
||||
republican,n,n,n,y,y,n,y,n,y,y,n,n,n,y,n,y
|
||||
democrat,n,n,y,n,n,n,y,y,y,y,y,n,n,n,y,y
|
||||
republican,n,n,n,y,y,y,y,n,n,y,n,y,n,y,y,y
|
||||
republican,n,n,n,y,y,y,n,n,n,y,n,y,y,y,n,y
|
||||
republican,y,n,n,y,y,y,n,n,n,y,n,y,y,y,n,n
|
||||
democrat,y,n,y,n,n,n,y,y,y,y,n,y,n,n,y,?
|
||||
republican,n,y,y,y,y,y,y,y,y,n,n,y,y,y,n,y
|
||||
democrat,n,y,n,n,n,y,y,n,y,n,y,n,n,n,y,y
|
||||
republican,n,n,y,y,y,y,y,y,y,y,n,y,y,y,y,y
|
||||
democrat,n,y,n,y,n,y,y,y,y,n,y,n,y,n,y,?
|
||||
republican,n,n,y,y,y,y,y,n,n,y,y,y,y,y,n,y
|
||||
democrat,n,y,y,n,n,y,y,y,y,y,n,?,n,n,y,y
|
||||
republican,y,n,y,y,n,n,n,y,y,y,n,n,n,y,y,y
|
||||
republican,n,n,n,y,y,y,n,n,n,n,n,y,y,y,n,n
|
||||
republican,n,n,n,y,y,y,n,n,n,n,n,y,y,y,n,n
|
||||
democrat,y,y,y,n,n,y,y,y,y,y,y,y,y,y,n,?
|
||||
republican,n,n,n,y,y,y,n,n,n,y,?,y,y,y,n,y
|
||||
democrat,y,n,y,n,n,y,y,y,y,y,n,n,y,n,n,y
|
||||
democrat,y,n,y,n,y,y,y,n,y,y,n,n,y,y,n,?
|
||||
democrat,y,y,y,n,n,y,y,y,y,y,y,y,y,n,n,y
|
||||
republican,y,y,n,y,y,y,n,n,n,y,y,n,y,n,n,n
|
||||
republican,y,y,n,y,y,y,n,n,n,n,y,n,y,y,n,y
|
||||
democrat,n,y,n,n,y,y,n,n,n,y,y,n,y,y,n,n
|
||||
democrat,y,n,y,n,n,n,y,y,n,y,y,n,n,n,n,?
|
||||
democrat,y,y,y,n,y,y,y,y,n,y,y,n,n,n,y,?
|
||||
democrat,n,y,y,n,n,y,y,y,n,y,n,n,n,n,y,y
|
||||
republican,n,y,n,y,y,y,n,n,n,n,n,n,y,y,n,y
|
||||
democrat,y,y,y,n,?,y,y,y,n,y,?,?,n,n,y,y
|
||||
democrat,y,y,y,n,?,n,y,y,y,y,n,n,n,n,y,?
|
||||
democrat,n,y,y,y,y,y,n,n,n,n,y,y,?,y,n,n
|
||||
democrat,n,y,y,?,y,y,n,y,n,y,?,n,y,y,?,y
|
||||
republican,n,y,n,y,y,y,n,n,n,n,n,y,y,y,n,y
|
||||
democrat,n,y,n,y,y,y,n,n,n,n,y,y,n,y,n,n
|
||||
democrat,y,?,y,n,n,n,y,y,y,n,y,n,n,n,y,y
|
||||
republican,n,y,n,y,y,y,?,?,n,n,?,?,y,?,?,?
|
||||
republican,n,n,n,y,y,y,n,n,n,n,n,y,y,y,n,y
|
||||
republican,n,n,n,y,y,y,n,n,n,n,n,y,y,y,n,y
|
||||
democrat,y,y,y,n,n,y,?,y,y,n,y,n,y,n,y,y
|
||||
democrat,y,y,y,n,y,y,y,y,y,y,y,n,y,y,n,?
|
||||
democrat,y,y,n,y,y,y,n,n,n,n,y,n,y,y,n,?
|
||||
democrat,y,y,y,n,y,y,n,y,y,y,y,n,n,n,n,y
|
||||
democrat,y,y,y,y,y,y,n,n,n,n,y,y,y,y,n,y
|
||||
democrat,y,y,n,n,y,y,n,n,n,n,y,y,y,y,y,n
|
||||
democrat,n,?,y,n,y,y,n,y,n,n,y,n,n,n,n,?
|
||||
democrat,y,y,y,n,y,y,n,y,y,n,y,n,n,y,n,?
|
||||
democrat,n,y,y,y,y,y,n,n,n,n,n,y,y,y,n,?
|
||||
democrat,y,n,y,n,n,n,y,y,y,?,y,n,n,n,y,?
|
||||
democrat,?,?,n,n,?,y,?,n,n,n,y,y,n,y,n,?
|
||||
democrat,y,y,n,n,n,n,n,y,y,n,y,n,n,n,y,n
|
||||
republican,y,y,n,y,y,y,n,n,n,n,y,y,y,y,n,y
|
||||
republican,?,?,?,?,n,y,n,y,y,n,n,y,y,n,n,?
|
||||
democrat,y,y,?,?,?,y,n,n,n,n,y,n,y,n,n,y
|
||||
democrat,y,y,y,?,n,n,n,y,n,n,y,?,n,n,y,y
|
||||
democrat,y,y,y,n,y,y,n,y,n,n,y,n,y,n,y,y
|
||||
democrat,y,y,n,n,y,?,n,n,n,n,y,n,y,y,n,y
|
||||
democrat,n,y,y,n,y,y,n,y,n,n,n,n,n,n,n,y
|
||||
republican,n,y,n,y,?,y,n,n,n,y,n,y,y,y,n,n
|
||||
republican,n,y,n,y,y,y,n,?,n,n,?,?,?,y,n,?
|
||||
republican,n,y,n,y,y,y,n,n,n,y,y,y,y,y,n,n
|
||||
republican,?,n,y,y,n,y,y,y,y,y,n,y,n,y,n,y
|
||||
republican,n,y,n,y,y,y,n,n,n,y,n,y,?,y,n,n
|
||||
republican,y,y,n,y,y,y,n,n,n,y,n,y,y,y,n,y
|
||||
republican,n,n,n,y,y,y,n,n,n,n,n,y,y,y,n,y
|
||||
democrat,y,n,y,n,y,y,n,n,y,y,n,n,y,y,n,y
|
||||
democrat,n,n,n,y,y,y,n,n,n,n,y,y,y,y,n,n
|
||||
democrat,y,n,y,n,n,y,y,y,y,n,n,y,?,y,y,y
|
||||
republican,n,n,n,y,y,y,n,n,n,n,n,y,y,y,n,n
|
||||
republican,n,n,n,y,y,y,n,n,n,n,y,y,y,y,n,y
|
||||
democrat,y,n,y,n,n,y,y,y,y,y,y,n,n,n,n,y
|
||||
republican,n,n,n,y,y,y,n,n,n,y,n,y,y,y,n,y
|
||||
republican,y,y,y,y,y,y,y,y,n,y,?,?,?,y,n,y
|
||||
democrat,y,y,y,n,n,n,y,y,y,n,n,n,n,n,n,y
|
||||
democrat,n,y,y,n,n,y,y,y,?,y,n,n,n,n,n,y
|
||||
republican,y,y,n,y,y,y,n,n,n,y,n,n,y,y,n,y
|
||||
democrat,y,y,y,n,n,n,y,y,y,y,y,n,y,n,n,y
|
||||
democrat,y,y,y,n,n,n,y,y,n,y,n,n,n,n,n,y
|
||||
democrat,y,y,y,n,n,n,y,y,y,n,n,n,n,n,n,y
|
||||
republican,y,y,y,y,y,y,y,y,n,y,n,n,y,y,n,y
|
||||
democrat,n,y,y,n,y,y,y,y,n,n,y,n,y,n,y,y
|
||||
democrat,n,n,y,n,n,y,y,y,y,n,y,n,n,n,y,y
|
||||
democrat,n,y,y,n,n,y,y,y,y,n,y,n,n,y,y,y
|
||||
democrat,n,y,y,n,n,?,y,y,y,y,y,n,?,y,y,y
|
||||
democrat,n,n,y,n,n,n,y,y,n,y,y,n,n,n,y,?
|
||||
democrat,y,n,y,n,n,n,y,y,y,y,n,n,n,n,y,y
|
||||
republican,n,n,n,y,y,y,y,y,n,y,n,y,y,y,n,y
|
||||
democrat,?,?,?,n,n,n,y,y,y,y,n,n,y,n,y,y
|
||||
democrat,y,n,y,n,?,n,y,y,y,y,n,y,n,?,y,y
|
||||
republican,n,n,y,y,y,y,n,n,y,y,n,y,y,y,n,y
|
||||
democrat,n,n,y,n,n,n,y,y,y,y,n,n,n,n,n,y
|
||||
republican,n,?,n,y,y,y,n,n,n,n,y,y,y,y,n,y
|
||||
republican,n,n,n,y,y,y,?,?,?,?,n,y,y,y,n,y
|
||||
republican,n,y,n,y,y,y,n,n,n,y,n,y,y,y,?,n
|
432
Code/datasets/monks-1.test
Normal file
432
Code/datasets/monks-1.test
Normal file
|
@ -0,0 +1,432 @@
|
|||
1 1 1 1 1 1 1 data_1
|
||||
1 1 1 1 1 1 2 data_2
|
||||
1 1 1 1 1 2 1 data_3
|
||||
1 1 1 1 1 2 2 data_4
|
||||
1 1 1 1 1 3 1 data_5
|
||||
1 1 1 1 1 3 2 data_6
|
||||
1 1 1 1 1 4 1 data_7
|
||||
1 1 1 1 1 4 2 data_8
|
||||
1 1 1 1 2 1 1 data_9
|
||||
1 1 1 1 2 1 2 data_10
|
||||
1 1 1 1 2 2 1 data_11
|
||||
1 1 1 1 2 2 2 data_12
|
||||
1 1 1 1 2 3 1 data_13
|
||||
1 1 1 1 2 3 2 data_14
|
||||
1 1 1 1 2 4 1 data_15
|
||||
1 1 1 1 2 4 2 data_16
|
||||
1 1 1 1 3 1 1 data_17
|
||||
1 1 1 1 3 1 2 data_18
|
||||
1 1 1 1 3 2 1 data_19
|
||||
1 1 1 1 3 2 2 data_20
|
||||
1 1 1 1 3 3 1 data_21
|
||||
1 1 1 1 3 3 2 data_22
|
||||
1 1 1 1 3 4 1 data_23
|
||||
1 1 1 1 3 4 2 data_24
|
||||
1 1 1 2 1 1 1 data_25
|
||||
1 1 1 2 1 1 2 data_26
|
||||
1 1 1 2 1 2 1 data_27
|
||||
1 1 1 2 1 2 2 data_28
|
||||
1 1 1 2 1 3 1 data_29
|
||||
1 1 1 2 1 3 2 data_30
|
||||
1 1 1 2 1 4 1 data_31
|
||||
1 1 1 2 1 4 2 data_32
|
||||
1 1 1 2 2 1 1 data_33
|
||||
1 1 1 2 2 1 2 data_34
|
||||
1 1 1 2 2 2 1 data_35
|
||||
1 1 1 2 2 2 2 data_36
|
||||
1 1 1 2 2 3 1 data_37
|
||||
1 1 1 2 2 3 2 data_38
|
||||
1 1 1 2 2 4 1 data_39
|
||||
1 1 1 2 2 4 2 data_40
|
||||
1 1 1 2 3 1 1 data_41
|
||||
1 1 1 2 3 1 2 data_42
|
||||
1 1 1 2 3 2 1 data_43
|
||||
1 1 1 2 3 2 2 data_44
|
||||
1 1 1 2 3 3 1 data_45
|
||||
1 1 1 2 3 3 2 data_46
|
||||
1 1 1 2 3 4 1 data_47
|
||||
1 1 1 2 3 4 2 data_48
|
||||
1 1 2 1 1 1 1 data_49
|
||||
1 1 2 1 1 1 2 data_50
|
||||
0 1 2 1 1 2 1 data_51
|
||||
0 1 2 1 1 2 2 data_52
|
||||
0 1 2 1 1 3 1 data_53
|
||||
0 1 2 1 1 3 2 data_54
|
||||
0 1 2 1 1 4 1 data_55
|
||||
0 1 2 1 1 4 2 data_56
|
||||
1 1 2 1 2 1 1 data_57
|
||||
1 1 2 1 2 1 2 data_58
|
||||
0 1 2 1 2 2 1 data_59
|
||||
0 1 2 1 2 2 2 data_60
|
||||
0 1 2 1 2 3 1 data_61
|
||||
0 1 2 1 2 3 2 data_62
|
||||
0 1 2 1 2 4 1 data_63
|
||||
0 1 2 1 2 4 2 data_64
|
||||
1 1 2 1 3 1 1 data_65
|
||||
1 1 2 1 3 1 2 data_66
|
||||
0 1 2 1 3 2 1 data_67
|
||||
0 1 2 1 3 2 2 data_68
|
||||
0 1 2 1 3 3 1 data_69
|
||||
0 1 2 1 3 3 2 data_70
|
||||
0 1 2 1 3 4 1 data_71
|
||||
0 1 2 1 3 4 2 data_72
|
||||
1 1 2 2 1 1 1 data_73
|
||||
1 1 2 2 1 1 2 data_74
|
||||
0 1 2 2 1 2 1 data_75
|
||||
0 1 2 2 1 2 2 data_76
|
||||
0 1 2 2 1 3 1 data_77
|
||||
0 1 2 2 1 3 2 data_78
|
||||
0 1 2 2 1 4 1 data_79
|
||||
0 1 2 2 1 4 2 data_80
|
||||
1 1 2 2 2 1 1 data_81
|
||||
1 1 2 2 2 1 2 data_82
|
||||
0 1 2 2 2 2 1 data_83
|
||||
0 1 2 2 2 2 2 data_84
|
||||
0 1 2 2 2 3 1 data_85
|
||||
0 1 2 2 2 3 2 data_86
|
||||
0 1 2 2 2 4 1 data_87
|
||||
0 1 2 2 2 4 2 data_88
|
||||
1 1 2 2 3 1 1 data_89
|
||||
1 1 2 2 3 1 2 data_90
|
||||
0 1 2 2 3 2 1 data_91
|
||||
0 1 2 2 3 2 2 data_92
|
||||
0 1 2 2 3 3 1 data_93
|
||||
0 1 2 2 3 3 2 data_94
|
||||
0 1 2 2 3 4 1 data_95
|
||||
0 1 2 2 3 4 2 data_96
|
||||
1 1 3 1 1 1 1 data_97
|
||||
1 1 3 1 1 1 2 data_98
|
||||
0 1 3 1 1 2 1 data_99
|
||||
0 1 3 1 1 2 2 data_100
|
||||
0 1 3 1 1 3 1 data_101
|
||||
0 1 3 1 1 3 2 data_102
|
||||
0 1 3 1 1 4 1 data_103
|
||||
0 1 3 1 1 4 2 data_104
|
||||
1 1 3 1 2 1 1 data_105
|
||||
1 1 3 1 2 1 2 data_106
|
||||
0 1 3 1 2 2 1 data_107
|
||||
0 1 3 1 2 2 2 data_108
|
||||
0 1 3 1 2 3 1 data_109
|
||||
0 1 3 1 2 3 2 data_110
|
||||
0 1 3 1 2 4 1 data_111
|
||||
0 1 3 1 2 4 2 data_112
|
||||
1 1 3 1 3 1 1 data_113
|
||||
1 1 3 1 3 1 2 data_114
|
||||
0 1 3 1 3 2 1 data_115
|
||||
0 1 3 1 3 2 2 data_116
|
||||
0 1 3 1 3 3 1 data_117
|
||||
0 1 3 1 3 3 2 data_118
|
||||
0 1 3 1 3 4 1 data_119
|
||||
0 1 3 1 3 4 2 data_120
|
||||
1 1 3 2 1 1 1 data_121
|
||||
1 1 3 2 1 1 2 data_122
|
||||
0 1 3 2 1 2 1 data_123
|
||||
0 1 3 2 1 2 2 data_124
|
||||
0 1 3 2 1 3 1 data_125
|
||||
0 1 3 2 1 3 2 data_126
|
||||
0 1 3 2 1 4 1 data_127
|
||||
0 1 3 2 1 4 2 data_128
|
||||
1 1 3 2 2 1 1 data_129
|
||||
1 1 3 2 2 1 2 data_130
|
||||
0 1 3 2 2 2 1 data_131
|
||||
0 1 3 2 2 2 2 data_132
|
||||
0 1 3 2 2 3 1 data_133
|
||||
0 1 3 2 2 3 2 data_134
|
||||
0 1 3 2 2 4 1 data_135
|
||||
0 1 3 2 2 4 2 data_136
|
||||
1 1 3 2 3 1 1 data_137
|
||||
1 1 3 2 3 1 2 data_138
|
||||
0 1 3 2 3 2 1 data_139
|
||||
0 1 3 2 3 2 2 data_140
|
||||
0 1 3 2 3 3 1 data_141
|
||||
0 1 3 2 3 3 2 data_142
|
||||
0 1 3 2 3 4 1 data_143
|
||||
0 1 3 2 3 4 2 data_144
|
||||
1 2 1 1 1 1 1 data_145
|
||||
1 2 1 1 1 1 2 data_146
|
||||
0 2 1 1 1 2 1 data_147
|
||||
0 2 1 1 1 2 2 data_148
|
||||
0 2 1 1 1 3 1 data_149
|
||||
0 2 1 1 1 3 2 data_150
|
||||
0 2 1 1 1 4 1 data_151
|
||||
0 2 1 1 1 4 2 data_152
|
||||
1 2 1 1 2 1 1 data_153
|
||||
1 2 1 1 2 1 2 data_154
|
||||
0 2 1 1 2 2 1 data_155
|
||||
0 2 1 1 2 2 2 data_156
|
||||
0 2 1 1 2 3 1 data_157
|
||||
0 2 1 1 2 3 2 data_158
|
||||
0 2 1 1 2 4 1 data_159
|
||||
0 2 1 1 2 4 2 data_160
|
||||
1 2 1 1 3 1 1 data_161
|
||||
1 2 1 1 3 1 2 data_162
|
||||
0 2 1 1 3 2 1 data_163
|
||||
0 2 1 1 3 2 2 data_164
|
||||
0 2 1 1 3 3 1 data_165
|
||||
0 2 1 1 3 3 2 data_166
|
||||
0 2 1 1 3 4 1 data_167
|
||||
0 2 1 1 3 4 2 data_168
|
||||
1 2 1 2 1 1 1 data_169
|
||||
1 2 1 2 1 1 2 data_170
|
||||
0 2 1 2 1 2 1 data_171
|
||||
0 2 1 2 1 2 2 data_172
|
||||
0 2 1 2 1 3 1 data_173
|
||||
0 2 1 2 1 3 2 data_174
|
||||
0 2 1 2 1 4 1 data_175
|
||||
0 2 1 2 1 4 2 data_176
|
||||
1 2 1 2 2 1 1 data_177
|
||||
1 2 1 2 2 1 2 data_178
|
||||
0 2 1 2 2 2 1 data_179
|
||||
0 2 1 2 2 2 2 data_180
|
||||
0 2 1 2 2 3 1 data_181
|
||||
0 2 1 2 2 3 2 data_182
|
||||
0 2 1 2 2 4 1 data_183
|
||||
0 2 1 2 2 4 2 data_184
|
||||
1 2 1 2 3 1 1 data_185
|
||||
1 2 1 2 3 1 2 data_186
|
||||
0 2 1 2 3 2 1 data_187
|
||||
0 2 1 2 3 2 2 data_188
|
||||
0 2 1 2 3 3 1 data_189
|
||||
0 2 1 2 3 3 2 data_190
|
||||
0 2 1 2 3 4 1 data_191
|
||||
0 2 1 2 3 4 2 data_192
|
||||
1 2 2 1 1 1 1 data_193
|
||||
1 2 2 1 1 1 2 data_194
|
||||
1 2 2 1 1 2 1 data_195
|
||||
1 2 2 1 1 2 2 data_196
|
||||
1 2 2 1 1 3 1 data_197
|
||||
1 2 2 1 1 3 2 data_198
|
||||
1 2 2 1 1 4 1 data_199
|
||||
1 2 2 1 1 4 2 data_200
|
||||
1 2 2 1 2 1 1 data_201
|
||||
1 2 2 1 2 1 2 data_202
|
||||
1 2 2 1 2 2 1 data_203
|
||||
1 2 2 1 2 2 2 data_204
|
||||
1 2 2 1 2 3 1 data_205
|
||||
1 2 2 1 2 3 2 data_206
|
||||
1 2 2 1 2 4 1 data_207
|
||||
1 2 2 1 2 4 2 data_208
|
||||
1 2 2 1 3 1 1 data_209
|
||||
1 2 2 1 3 1 2 data_210
|
||||
1 2 2 1 3 2 1 data_211
|
||||
1 2 2 1 3 2 2 data_212
|
||||
1 2 2 1 3 3 1 data_213
|
||||
1 2 2 1 3 3 2 data_214
|
||||
1 2 2 1 3 4 1 data_215
|
||||
1 2 2 1 3 4 2 data_216
|
||||
1 2 2 2 1 1 1 data_217
|
||||
1 2 2 2 1 1 2 data_218
|
||||
1 2 2 2 1 2 1 data_219
|
||||
1 2 2 2 1 2 2 data_220
|
||||
1 2 2 2 1 3 1 data_221
|
||||
1 2 2 2 1 3 2 data_222
|
||||
1 2 2 2 1 4 1 data_223
|
||||
1 2 2 2 1 4 2 data_224
|
||||
1 2 2 2 2 1 1 data_225
|
||||
1 2 2 2 2 1 2 data_226
|
||||
1 2 2 2 2 2 1 data_227
|
||||
1 2 2 2 2 2 2 data_228
|
||||
1 2 2 2 2 3 1 data_229
|
||||
1 2 2 2 2 3 2 data_230
|
||||
1 2 2 2 2 4 1 data_231
|
||||
1 2 2 2 2 4 2 data_232
|
||||
1 2 2 2 3 1 1 data_233
|
||||
1 2 2 2 3 1 2 data_234
|
||||
1 2 2 2 3 2 1 data_235
|
||||
1 2 2 2 3 2 2 data_236
|
||||
1 2 2 2 3 3 1 data_237
|
||||
1 2 2 2 3 3 2 data_238
|
||||
1 2 2 2 3 4 1 data_239
|
||||
1 2 2 2 3 4 2 data_240
|
||||
1 2 3 1 1 1 1 data_241
|
||||
1 2 3 1 1 1 2 data_242
|
||||
0 2 3 1 1 2 1 data_243
|
||||
0 2 3 1 1 2 2 data_244
|
||||
0 2 3 1 1 3 1 data_245
|
||||
0 2 3 1 1 3 2 data_246
|
||||
0 2 3 1 1 4 1 data_247
|
||||
0 2 3 1 1 4 2 data_248
|
||||
1 2 3 1 2 1 1 data_249
|
||||
1 2 3 1 2 1 2 data_250
|
||||
0 2 3 1 2 2 1 data_251
|
||||
0 2 3 1 2 2 2 data_252
|
||||
0 2 3 1 2 3 1 data_253
|
||||
0 2 3 1 2 3 2 data_254
|
||||
0 2 3 1 2 4 1 data_255
|
||||
0 2 3 1 2 4 2 data_256
|
||||
1 2 3 1 3 1 1 data_257
|
||||
1 2 3 1 3 1 2 data_258
|
||||
0 2 3 1 3 2 1 data_259
|
||||
0 2 3 1 3 2 2 data_260
|
||||
0 2 3 1 3 3 1 data_261
|
||||
0 2 3 1 3 3 2 data_262
|
||||
0 2 3 1 3 4 1 data_263
|
||||
0 2 3 1 3 4 2 data_264
|
||||
1 2 3 2 1 1 1 data_265
|
||||
1 2 3 2 1 1 2 data_266
|
||||
0 2 3 2 1 2 1 data_267
|
||||
0 2 3 2 1 2 2 data_268
|
||||
0 2 3 2 1 3 1 data_269
|
||||
0 2 3 2 1 3 2 data_270
|
||||
0 2 3 2 1 4 1 data_271
|
||||
0 2 3 2 1 4 2 data_272
|
||||
1 2 3 2 2 1 1 data_273
|
||||
1 2 3 2 2 1 2 data_274
|
||||
0 2 3 2 2 2 1 data_275
|
||||
0 2 3 2 2 2 2 data_276
|
||||
0 2 3 2 2 3 1 data_277
|
||||
0 2 3 2 2 3 2 data_278
|
||||
0 2 3 2 2 4 1 data_279
|
||||
0 2 3 2 2 4 2 data_280
|
||||
1 2 3 2 3 1 1 data_281
|
||||
1 2 3 2 3 1 2 data_282
|
||||
0 2 3 2 3 2 1 data_283
|
||||
0 2 3 2 3 2 2 data_284
|
||||
0 2 3 2 3 3 1 data_285
|
||||
0 2 3 2 3 3 2 data_286
|
||||
0 2 3 2 3 4 1 data_287
|
||||
0 2 3 2 3 4 2 data_288
|
||||
1 3 1 1 1 1 1 data_289
|
||||
1 3 1 1 1 1 2 data_290
|
||||
0 3 1 1 1 2 1 data_291
|
||||
0 3 1 1 1 2 2 data_292
|
||||
0 3 1 1 1 3 1 data_293
|
||||
0 3 1 1 1 3 2 data_294
|
||||
0 3 1 1 1 4 1 data_295
|
||||
0 3 1 1 1 4 2 data_296
|
||||
1 3 1 1 2 1 1 data_297
|
||||
1 3 1 1 2 1 2 data_298
|
||||
0 3 1 1 2 2 1 data_299
|
||||
0 3 1 1 2 2 2 data_300
|
||||
0 3 1 1 2 3 1 data_301
|
||||
0 3 1 1 2 3 2 data_302
|
||||
0 3 1 1 2 4 1 data_303
|
||||
0 3 1 1 2 4 2 data_304
|
||||
1 3 1 1 3 1 1 data_305
|
||||
1 3 1 1 3 1 2 data_306
|
||||
0 3 1 1 3 2 1 data_307
|
||||
0 3 1 1 3 2 2 data_308
|
||||
0 3 1 1 3 3 1 data_309
|
||||
0 3 1 1 3 3 2 data_310
|
||||
0 3 1 1 3 4 1 data_311
|
||||
0 3 1 1 3 4 2 data_312
|
||||
1 3 1 2 1 1 1 data_313
|
||||
1 3 1 2 1 1 2 data_314
|
||||
0 3 1 2 1 2 1 data_315
|
||||
0 3 1 2 1 2 2 data_316
|
||||
0 3 1 2 1 3 1 data_317
|
||||
0 3 1 2 1 3 2 data_318
|
||||
0 3 1 2 1 4 1 data_319
|
||||
0 3 1 2 1 4 2 data_320
|
||||
1 3 1 2 2 1 1 data_321
|
||||
1 3 1 2 2 1 2 data_322
|
||||
0 3 1 2 2 2 1 data_323
|
||||
0 3 1 2 2 2 2 data_324
|
||||
0 3 1 2 2 3 1 data_325
|
||||
0 3 1 2 2 3 2 data_326
|
||||
0 3 1 2 2 4 1 data_327
|
||||
0 3 1 2 2 4 2 data_328
|
||||
1 3 1 2 3 1 1 data_329
|
||||
1 3 1 2 3 1 2 data_330
|
||||
0 3 1 2 3 2 1 data_331
|
||||
0 3 1 2 3 2 2 data_332
|
||||
0 3 1 2 3 3 1 data_333
|
||||
0 3 1 2 3 3 2 data_334
|
||||
0 3 1 2 3 4 1 data_335
|
||||
0 3 1 2 3 4 2 data_336
|
||||
1 3 2 1 1 1 1 data_337
|
||||
1 3 2 1 1 1 2 data_338
|
||||
0 3 2 1 1 2 1 data_339
|
||||
0 3 2 1 1 2 2 data_340
|
||||
0 3 2 1 1 3 1 data_341
|
||||
0 3 2 1 1 3 2 data_342
|
||||
0 3 2 1 1 4 1 data_343
|
||||
0 3 2 1 1 4 2 data_344
|
||||
1 3 2 1 2 1 1 data_345
|
||||
1 3 2 1 2 1 2 data_346
|
||||
0 3 2 1 2 2 1 data_347
|
||||
0 3 2 1 2 2 2 data_348
|
||||
0 3 2 1 2 3 1 data_349
|
||||
0 3 2 1 2 3 2 data_350
|
||||
0 3 2 1 2 4 1 data_351
|
||||
0 3 2 1 2 4 2 data_352
|
||||
1 3 2 1 3 1 1 data_353
|
||||
1 3 2 1 3 1 2 data_354
|
||||
0 3 2 1 3 2 1 data_355
|
||||
0 3 2 1 3 2 2 data_356
|
||||
0 3 2 1 3 3 1 data_357
|
||||
0 3 2 1 3 3 2 data_358
|
||||
0 3 2 1 3 4 1 data_359
|
||||
0 3 2 1 3 4 2 data_360
|
||||
1 3 2 2 1 1 1 data_361
|
||||
1 3 2 2 1 1 2 data_362
|
||||
0 3 2 2 1 2 1 data_363
|
||||
0 3 2 2 1 2 2 data_364
|
||||
0 3 2 2 1 3 1 data_365
|
||||
0 3 2 2 1 3 2 data_366
|
||||
0 3 2 2 1 4 1 data_367
|
||||
0 3 2 2 1 4 2 data_368
|
||||
1 3 2 2 2 1 1 data_369
|
||||
1 3 2 2 2 1 2 data_370
|
||||
0 3 2 2 2 2 1 data_371
|
||||
0 3 2 2 2 2 2 data_372
|
||||
0 3 2 2 2 3 1 data_373
|
||||
0 3 2 2 2 3 2 data_374
|
||||
0 3 2 2 2 4 1 data_375
|
||||
0 3 2 2 2 4 2 data_376
|
||||
1 3 2 2 3 1 1 data_377
|
||||
1 3 2 2 3 1 2 data_378
|
||||
0 3 2 2 3 2 1 data_379
|
||||
0 3 2 2 3 2 2 data_380
|
||||
0 3 2 2 3 3 1 data_381
|
||||
0 3 2 2 3 3 2 data_382
|
||||
0 3 2 2 3 4 1 data_383
|
||||
0 3 2 2 3 4 2 data_384
|
||||
1 3 3 1 1 1 1 data_385
|
||||
1 3 3 1 1 1 2 data_386
|
||||
1 3 3 1 1 2 1 data_387
|
||||
1 3 3 1 1 2 2 data_388
|
||||
1 3 3 1 1 3 1 data_389
|
||||
1 3 3 1 1 3 2 data_390
|
||||
1 3 3 1 1 4 1 data_391
|
||||
1 3 3 1 1 4 2 data_392
|
||||
1 3 3 1 2 1 1 data_393
|
||||
1 3 3 1 2 1 2 data_394
|
||||
1 3 3 1 2 2 1 data_395
|
||||
1 3 3 1 2 2 2 data_396
|
||||
1 3 3 1 2 3 1 data_397
|
||||
1 3 3 1 2 3 2 data_398
|
||||
1 3 3 1 2 4 1 data_399
|
||||
1 3 3 1 2 4 2 data_400
|
||||
1 3 3 1 3 1 1 data_401
|
||||
1 3 3 1 3 1 2 data_402
|
||||
1 3 3 1 3 2 1 data_403
|
||||
1 3 3 1 3 2 2 data_404
|
||||
1 3 3 1 3 3 1 data_405
|
||||
1 3 3 1 3 3 2 data_406
|
||||
1 3 3 1 3 4 1 data_407
|
||||
1 3 3 1 3 4 2 data_408
|
||||
1 3 3 2 1 1 1 data_409
|
||||
1 3 3 2 1 1 2 data_410
|
||||
1 3 3 2 1 2 1 data_411
|
||||
1 3 3 2 1 2 2 data_412
|
||||
1 3 3 2 1 3 1 data_413
|
||||
1 3 3 2 1 3 2 data_414
|
||||
1 3 3 2 1 4 1 data_415
|
||||
1 3 3 2 1 4 2 data_416
|
||||
1 3 3 2 2 1 1 data_417
|
||||
1 3 3 2 2 1 2 data_418
|
||||
1 3 3 2 2 2 1 data_419
|
||||
1 3 3 2 2 2 2 data_420
|
||||
1 3 3 2 2 3 1 data_421
|
||||
1 3 3 2 2 3 2 data_422
|
||||
1 3 3 2 2 4 1 data_423
|
||||
1 3 3 2 2 4 2 data_424
|
||||
1 3 3 2 3 1 1 data_425
|
||||
1 3 3 2 3 1 2 data_426
|
||||
1 3 3 2 3 2 1 data_427
|
||||
1 3 3 2 3 2 2 data_428
|
||||
1 3 3 2 3 3 1 data_429
|
||||
1 3 3 2 3 3 2 data_430
|
||||
1 3 3 2 3 4 1 data_431
|
||||
1 3 3 2 3 4 2 data_432
|
124
Code/datasets/monks-1.train
Normal file
124
Code/datasets/monks-1.train
Normal file
|
@ -0,0 +1,124 @@
|
|||
1 1 1 1 1 3 1 data_5
|
||||
1 1 1 1 1 3 2 data_6
|
||||
1 1 1 1 3 2 1 data_19
|
||||
1 1 1 1 3 3 2 data_22
|
||||
1 1 1 2 1 2 1 data_27
|
||||
1 1 1 2 1 2 2 data_28
|
||||
1 1 1 2 2 3 1 data_37
|
||||
1 1 1 2 2 4 1 data_39
|
||||
1 1 1 2 3 1 2 data_42
|
||||
1 1 2 1 1 1 2 data_50
|
||||
0 1 2 1 1 2 1 data_51
|
||||
0 1 2 1 1 3 1 data_53
|
||||
0 1 2 1 1 4 2 data_56
|
||||
1 1 2 1 2 1 1 data_57
|
||||
0 1 2 1 2 3 1 data_61
|
||||
0 1 2 1 2 3 2 data_62
|
||||
0 1 2 1 2 4 2 data_64
|
||||
0 1 2 1 3 2 1 data_67
|
||||
0 1 2 1 3 4 2 data_72
|
||||
0 1 2 2 1 2 2 data_76
|
||||
0 1 2 2 2 3 2 data_86
|
||||
0 1 2 2 2 4 1 data_87
|
||||
0 1 2 2 2 4 2 data_88
|
||||
0 1 2 2 3 2 2 data_92
|
||||
0 1 2 2 3 3 1 data_93
|
||||
0 1 2 2 3 3 2 data_94
|
||||
0 1 3 1 1 2 1 data_99
|
||||
0 1 3 1 1 4 1 data_103
|
||||
0 1 3 1 2 2 1 data_107
|
||||
0 1 3 1 2 4 1 data_111
|
||||
1 1 3 1 3 1 2 data_114
|
||||
0 1 3 1 3 2 2 data_116
|
||||
0 1 3 1 3 3 1 data_117
|
||||
0 1 3 1 3 4 1 data_119
|
||||
0 1 3 1 3 4 2 data_120
|
||||
0 1 3 2 1 2 2 data_124
|
||||
1 1 3 2 2 1 2 data_130
|
||||
0 1 3 2 2 2 2 data_132
|
||||
0 1 3 2 2 3 2 data_134
|
||||
0 1 3 2 2 4 1 data_135
|
||||
0 1 3 2 2 4 2 data_136
|
||||
1 1 3 2 3 1 1 data_137
|
||||
0 1 3 2 3 2 1 data_139
|
||||
0 1 3 2 3 4 1 data_143
|
||||
0 1 3 2 3 4 2 data_144
|
||||
0 2 1 1 1 3 1 data_149
|
||||
0 2 1 1 1 3 2 data_150
|
||||
1 2 1 1 2 1 1 data_153
|
||||
1 2 1 1 2 1 2 data_154
|
||||
0 2 1 1 2 2 2 data_156
|
||||
0 2 1 1 2 3 1 data_157
|
||||
0 2 1 1 2 4 1 data_159
|
||||
0 2 1 1 2 4 2 data_160
|
||||
0 2 1 1 3 4 1 data_167
|
||||
0 2 1 2 1 2 2 data_172
|
||||
0 2 1 2 1 3 1 data_173
|
||||
0 2 1 2 1 4 2 data_176
|
||||
0 2 1 2 2 3 1 data_181
|
||||
0 2 1 2 2 4 2 data_184
|
||||
0 2 1 2 3 2 2 data_188
|
||||
0 2 1 2 3 4 1 data_191
|
||||
1 2 2 1 1 2 1 data_195
|
||||
1 2 2 1 1 2 2 data_196
|
||||
1 2 2 1 1 3 1 data_197
|
||||
1 2 2 1 2 3 2 data_206
|
||||
1 2 2 1 3 1 1 data_209
|
||||
1 2 2 1 3 1 2 data_210
|
||||
1 2 2 1 3 2 2 data_212
|
||||
1 2 2 1 3 3 2 data_214
|
||||
1 2 2 1 3 4 2 data_216
|
||||
1 2 2 2 1 1 1 data_217
|
||||
1 2 2 2 1 3 2 data_222
|
||||
1 2 2 2 1 4 1 data_223
|
||||
1 2 2 2 1 4 2 data_224
|
||||
1 2 2 2 2 2 1 data_227
|
||||
1 2 2 2 3 4 1 data_239
|
||||
1 2 3 1 1 1 1 data_241
|
||||
1 2 3 1 2 1 1 data_249
|
||||
0 2 3 1 2 3 1 data_253
|
||||
1 2 3 1 3 1 2 data_258
|
||||
0 2 3 1 3 3 1 data_261
|
||||
0 2 3 1 3 4 2 data_264
|
||||
0 2 3 2 1 3 2 data_270
|
||||
1 2 3 2 2 1 1 data_273
|
||||
1 2 3 2 2 1 2 data_274
|
||||
0 2 3 2 2 2 1 data_275
|
||||
0 2 3 2 3 3 2 data_286
|
||||
1 3 1 1 1 1 1 data_289
|
||||
1 3 1 1 1 1 2 data_290
|
||||
1 3 1 1 2 1 1 data_297
|
||||
0 3 1 1 2 2 2 data_300
|
||||
0 3 1 1 3 2 2 data_308
|
||||
1 3 1 2 1 1 1 data_313
|
||||
0 3 1 2 1 2 2 data_316
|
||||
0 3 1 2 2 2 2 data_324
|
||||
0 3 1 2 2 3 2 data_326
|
||||
0 3 1 2 3 2 2 data_332
|
||||
1 3 2 1 1 1 1 data_337
|
||||
0 3 2 1 1 4 2 data_344
|
||||
1 3 2 1 2 1 2 data_346
|
||||
0 3 2 1 2 4 2 data_352
|
||||
1 3 2 2 1 1 1 data_361
|
||||
1 3 2 2 1 1 2 data_362
|
||||
0 3 2 2 1 3 2 data_366
|
||||
1 3 2 2 3 1 1 data_377
|
||||
0 3 2 2 3 2 1 data_379
|
||||
0 3 2 2 3 4 1 data_383
|
||||
1 3 3 1 1 1 1 data_385
|
||||
1 3 3 1 1 2 1 data_387
|
||||
1 3 3 1 1 4 2 data_392
|
||||
1 3 3 1 2 3 2 data_398
|
||||
1 3 3 1 2 4 2 data_400
|
||||
1 3 3 1 3 1 2 data_402
|
||||
1 3 3 1 3 2 1 data_403
|
||||
1 3 3 1 3 2 2 data_404
|
||||
1 3 3 1 3 4 2 data_408
|
||||
1 3 3 2 1 1 1 data_409
|
||||
1 3 3 2 1 3 2 data_414
|
||||
1 3 3 2 1 4 1 data_415
|
||||
1 3 3 2 1 4 2 data_416
|
||||
1 3 3 2 3 1 2 data_426
|
||||
1 3 3 2 3 2 2 data_428
|
||||
1 3 3 2 3 3 2 data_430
|
||||
1 3 3 2 3 4 2 data_432
|
432
Code/datasets/monks-2.test
Normal file
432
Code/datasets/monks-2.test
Normal file
|
@ -0,0 +1,432 @@
|
|||
0 1 1 1 1 1 1 data_1
|
||||
0 1 1 1 1 1 2 data_2
|
||||
0 1 1 1 1 2 1 data_3
|
||||
0 1 1 1 1 2 2 data_4
|
||||
0 1 1 1 1 3 1 data_5
|
||||
0 1 1 1 1 3 2 data_6
|
||||
0 1 1 1 1 4 1 data_7
|
||||
0 1 1 1 1 4 2 data_8
|
||||
0 1 1 1 2 1 1 data_9
|
||||
0 1 1 1 2 1 2 data_10
|
||||
0 1 1 1 2 2 1 data_11
|
||||
0 1 1 1 2 2 2 data_12
|
||||
0 1 1 1 2 3 1 data_13
|
||||
0 1 1 1 2 3 2 data_14
|
||||
0 1 1 1 2 4 1 data_15
|
||||
0 1 1 1 2 4 2 data_16
|
||||
0 1 1 1 3 1 1 data_17
|
||||
0 1 1 1 3 1 2 data_18
|
||||
0 1 1 1 3 2 1 data_19
|
||||
0 1 1 1 3 2 2 data_20
|
||||
0 1 1 1 3 3 1 data_21
|
||||
0 1 1 1 3 3 2 data_22
|
||||
0 1 1 1 3 4 1 data_23
|
||||
0 1 1 1 3 4 2 data_24
|
||||
0 1 1 2 1 1 1 data_25
|
||||
0 1 1 2 1 1 2 data_26
|
||||
0 1 1 2 1 2 1 data_27
|
||||
0 1 1 2 1 2 2 data_28
|
||||
0 1 1 2 1 3 1 data_29
|
||||
0 1 1 2 1 3 2 data_30
|
||||
0 1 1 2 1 4 1 data_31
|
||||
0 1 1 2 1 4 2 data_32
|
||||
0 1 1 2 2 1 1 data_33
|
||||
0 1 1 2 2 1 2 data_34
|
||||
0 1 1 2 2 2 1 data_35
|
||||
1 1 1 2 2 2 2 data_36
|
||||
0 1 1 2 2 3 1 data_37
|
||||
1 1 1 2 2 3 2 data_38
|
||||
0 1 1 2 2 4 1 data_39
|
||||
1 1 1 2 2 4 2 data_40
|
||||
0 1 1 2 3 1 1 data_41
|
||||
0 1 1 2 3 1 2 data_42
|
||||
0 1 1 2 3 2 1 data_43
|
||||
1 1 1 2 3 2 2 data_44
|
||||
0 1 1 2 3 3 1 data_45
|
||||
1 1 1 2 3 3 2 data_46
|
||||
0 1 1 2 3 4 1 data_47
|
||||
1 1 1 2 3 4 2 data_48
|
||||
0 1 2 1 1 1 1 data_49
|
||||
0 1 2 1 1 1 2 data_50
|
||||
0 1 2 1 1 2 1 data_51
|
||||
0 1 2 1 1 2 2 data_52
|
||||
0 1 2 1 1 3 1 data_53
|
||||
0 1 2 1 1 3 2 data_54
|
||||
0 1 2 1 1 4 1 data_55
|
||||
0 1 2 1 1 4 2 data_56
|
||||
0 1 2 1 2 1 1 data_57
|
||||
0 1 2 1 2 1 2 data_58
|
||||
0 1 2 1 2 2 1 data_59
|
||||
1 1 2 1 2 2 2 data_60
|
||||
0 1 2 1 2 3 1 data_61
|
||||
1 1 2 1 2 3 2 data_62
|
||||
0 1 2 1 2 4 1 data_63
|
||||
1 1 2 1 2 4 2 data_64
|
||||
0 1 2 1 3 1 1 data_65
|
||||
0 1 2 1 3 1 2 data_66
|
||||
0 1 2 1 3 2 1 data_67
|
||||
1 1 2 1 3 2 2 data_68
|
||||
0 1 2 1 3 3 1 data_69
|
||||
1 1 2 1 3 3 2 data_70
|
||||
0 1 2 1 3 4 1 data_71
|
||||
1 1 2 1 3 4 2 data_72
|
||||
0 1 2 2 1 1 1 data_73
|
||||
0 1 2 2 1 1 2 data_74
|
||||
0 1 2 2 1 2 1 data_75
|
||||
1 1 2 2 1 2 2 data_76
|
||||
0 1 2 2 1 3 1 data_77
|
||||
1 1 2 2 1 3 2 data_78
|
||||
0 1 2 2 1 4 1 data_79
|
||||
1 1 2 2 1 4 2 data_80
|
||||
0 1 2 2 2 1 1 data_81
|
||||
1 1 2 2 2 1 2 data_82
|
||||
1 1 2 2 2 2 1 data_83
|
||||
0 1 2 2 2 2 2 data_84
|
||||
1 1 2 2 2 3 1 data_85
|
||||
0 1 2 2 2 3 2 data_86
|
||||
1 1 2 2 2 4 1 data_87
|
||||
0 1 2 2 2 4 2 data_88
|
||||
0 1 2 2 3 1 1 data_89
|
||||
1 1 2 2 3 1 2 data_90
|
||||
1 1 2 2 3 2 1 data_91
|
||||
0 1 2 2 3 2 2 data_92
|
||||
1 1 2 2 3 3 1 data_93
|
||||
0 1 2 2 3 3 2 data_94
|
||||
1 1 2 2 3 4 1 data_95
|
||||
0 1 2 2 3 4 2 data_96
|
||||
0 1 3 1 1 1 1 data_97
|
||||
0 1 3 1 1 1 2 data_98
|
||||
0 1 3 1 1 2 1 data_99
|
||||
0 1 3 1 1 2 2 data_100
|
||||
0 1 3 1 1 3 1 data_101
|
||||
0 1 3 1 1 3 2 data_102
|
||||
0 1 3 1 1 4 1 data_103
|
||||
0 1 3 1 1 4 2 data_104
|
||||
0 1 3 1 2 1 1 data_105
|
||||
0 1 3 1 2 1 2 data_106
|
||||
0 1 3 1 2 2 1 data_107
|
||||
1 1 3 1 2 2 2 data_108
|
||||
0 1 3 1 2 3 1 data_109
|
||||
1 1 3 1 2 3 2 data_110
|
||||
0 1 3 1 2 4 1 data_111
|
||||
1 1 3 1 2 4 2 data_112
|
||||
0 1 3 1 3 1 1 data_113
|
||||
0 1 3 1 3 1 2 data_114
|
||||
0 1 3 1 3 2 1 data_115
|
||||
1 1 3 1 3 2 2 data_116
|
||||
0 1 3 1 3 3 1 data_117
|
||||
1 1 3 1 3 3 2 data_118
|
||||
0 1 3 1 3 4 1 data_119
|
||||
1 1 3 1 3 4 2 data_120
|
||||
0 1 3 2 1 1 1 data_121
|
||||
0 1 3 2 1 1 2 data_122
|
||||
0 1 3 2 1 2 1 data_123
|
||||
1 1 3 2 1 2 2 data_124
|
||||
0 1 3 2 1 3 1 data_125
|
||||
1 1 3 2 1 3 2 data_126
|
||||
0 1 3 2 1 4 1 data_127
|
||||
1 1 3 2 1 4 2 data_128
|
||||
0 1 3 2 2 1 1 data_129
|
||||
1 1 3 2 2 1 2 data_130
|
||||
1 1 3 2 2 2 1 data_131
|
||||
0 1 3 2 2 2 2 data_132
|
||||
1 1 3 2 2 3 1 data_133
|
||||
0 1 3 2 2 3 2 data_134
|
||||
1 1 3 2 2 4 1 data_135
|
||||
0 1 3 2 2 4 2 data_136
|
||||
0 1 3 2 3 1 1 data_137
|
||||
1 1 3 2 3 1 2 data_138
|
||||
1 1 3 2 3 2 1 data_139
|
||||
0 1 3 2 3 2 2 data_140
|
||||
1 1 3 2 3 3 1 data_141
|
||||
0 1 3 2 3 3 2 data_142
|
||||
1 1 3 2 3 4 1 data_143
|
||||
0 1 3 2 3 4 2 data_144
|
||||
0 2 1 1 1 1 1 data_145
|
||||
0 2 1 1 1 1 2 data_146
|
||||
0 2 1 1 1 2 1 data_147
|
||||
0 2 1 1 1 2 2 data_148
|
||||
0 2 1 1 1 3 1 data_149
|
||||
0 2 1 1 1 3 2 data_150
|
||||
0 2 1 1 1 4 1 data_151
|
||||
0 2 1 1 1 4 2 data_152
|
||||
0 2 1 1 2 1 1 data_153
|
||||
0 2 1 1 2 1 2 data_154
|
||||
0 2 1 1 2 2 1 data_155
|
||||
1 2 1 1 2 2 2 data_156
|
||||
0 2 1 1 2 3 1 data_157
|
||||
1 2 1 1 2 3 2 data_158
|
||||
0 2 1 1 2 4 1 data_159
|
||||
1 2 1 1 2 4 2 data_160
|
||||
0 2 1 1 3 1 1 data_161
|
||||
0 2 1 1 3 1 2 data_162
|
||||
0 2 1 1 3 2 1 data_163
|
||||
1 2 1 1 3 2 2 data_164
|
||||
0 2 1 1 3 3 1 data_165
|
||||
1 2 1 1 3 3 2 data_166
|
||||
0 2 1 1 3 4 1 data_167
|
||||
1 2 1 1 3 4 2 data_168
|
||||
0 2 1 2 1 1 1 data_169
|
||||
0 2 1 2 1 1 2 data_170
|
||||
0 2 1 2 1 2 1 data_171
|
||||
1 2 1 2 1 2 2 data_172
|
||||
0 2 1 2 1 3 1 data_173
|
||||
1 2 1 2 1 3 2 data_174
|
||||
0 2 1 2 1 4 1 data_175
|
||||
1 2 1 2 1 4 2 data_176
|
||||
0 2 1 2 2 1 1 data_177
|
||||
1 2 1 2 2 1 2 data_178
|
||||
1 2 1 2 2 2 1 data_179
|
||||
0 2 1 2 2 2 2 data_180
|
||||
1 2 1 2 2 3 1 data_181
|
||||
0 2 1 2 2 3 2 data_182
|
||||
1 2 1 2 2 4 1 data_183
|
||||
0 2 1 2 2 4 2 data_184
|
||||
0 2 1 2 3 1 1 data_185
|
||||
1 2 1 2 3 1 2 data_186
|
||||
1 2 1 2 3 2 1 data_187
|
||||
0 2 1 2 3 2 2 data_188
|
||||
1 2 1 2 3 3 1 data_189
|
||||
0 2 1 2 3 3 2 data_190
|
||||
1 2 1 2 3 4 1 data_191
|
||||
0 2 1 2 3 4 2 data_192
|
||||
0 2 2 1 1 1 1 data_193
|
||||
0 2 2 1 1 1 2 data_194
|
||||
0 2 2 1 1 2 1 data_195
|
||||
1 2 2 1 1 2 2 data_196
|
||||
0 2 2 1 1 3 1 data_197
|
||||
1 2 2 1 1 3 2 data_198
|
||||
0 2 2 1 1 4 1 data_199
|
||||
1 2 2 1 1 4 2 data_200
|
||||
0 2 2 1 2 1 1 data_201
|
||||
1 2 2 1 2 1 2 data_202
|
||||
1 2 2 1 2 2 1 data_203
|
||||
0 2 2 1 2 2 2 data_204
|
||||
1 2 2 1 2 3 1 data_205
|
||||
0 2 2 1 2 3 2 data_206
|
||||
1 2 2 1 2 4 1 data_207
|
||||
0 2 2 1 2 4 2 data_208
|
||||
0 2 2 1 3 1 1 data_209
|
||||
1 2 2 1 3 1 2 data_210
|
||||
1 2 2 1 3 2 1 data_211
|
||||
0 2 2 1 3 2 2 data_212
|
||||
1 2 2 1 3 3 1 data_213
|
||||
0 2 2 1 3 3 2 data_214
|
||||
1 2 2 1 3 4 1 data_215
|
||||
0 2 2 1 3 4 2 data_216
|
||||
0 2 2 2 1 1 1 data_217
|
||||
1 2 2 2 1 1 2 data_218
|
||||
1 2 2 2 1 2 1 data_219
|
||||
0 2 2 2 1 2 2 data_220
|
||||
1 2 2 2 1 3 1 data_221
|
||||
0 2 2 2 1 3 2 data_222
|
||||
1 2 2 2 1 4 1 data_223
|
||||
0 2 2 2 1 4 2 data_224
|
||||
1 2 2 2 2 1 1 data_225
|
||||
0 2 2 2 2 1 2 data_226
|
||||
0 2 2 2 2 2 1 data_227
|
||||
0 2 2 2 2 2 2 data_228
|
||||
0 2 2 2 2 3 1 data_229
|
||||
0 2 2 2 2 3 2 data_230
|
||||
0 2 2 2 2 4 1 data_231
|
||||
0 2 2 2 2 4 2 data_232
|
||||
1 2 2 2 3 1 1 data_233
|
||||
0 2 2 2 3 1 2 data_234
|
||||
0 2 2 2 3 2 1 data_235
|
||||
0 2 2 2 3 2 2 data_236
|
||||
0 2 2 2 3 3 1 data_237
|
||||
0 2 2 2 3 3 2 data_238
|
||||
0 2 2 2 3 4 1 data_239
|
||||
0 2 2 2 3 4 2 data_240
|
||||
0 2 3 1 1 1 1 data_241
|
||||
0 2 3 1 1 1 2 data_242
|
||||
0 2 3 1 1 2 1 data_243
|
||||
1 2 3 1 1 2 2 data_244
|
||||
0 2 3 1 1 3 1 data_245
|
||||
1 2 3 1 1 3 2 data_246
|
||||
0 2 3 1 1 4 1 data_247
|
||||
1 2 3 1 1 4 2 data_248
|
||||
0 2 3 1 2 1 1 data_249
|
||||
1 2 3 1 2 1 2 data_250
|
||||
1 2 3 1 2 2 1 data_251
|
||||
0 2 3 1 2 2 2 data_252
|
||||
1 2 3 1 2 3 1 data_253
|
||||
0 2 3 1 2 3 2 data_254
|
||||
1 2 3 1 2 4 1 data_255
|
||||
0 2 3 1 2 4 2 data_256
|
||||
0 2 3 1 3 1 1 data_257
|
||||
1 2 3 1 3 1 2 data_258
|
||||
1 2 3 1 3 2 1 data_259
|
||||
0 2 3 1 3 2 2 data_260
|
||||
1 2 3 1 3 3 1 data_261
|
||||
0 2 3 1 3 3 2 data_262
|
||||
1 2 3 1 3 4 1 data_263
|
||||
0 2 3 1 3 4 2 data_264
|
||||
0 2 3 2 1 1 1 data_265
|
||||
1 2 3 2 1 1 2 data_266
|
||||
1 2 3 2 1 2 1 data_267
|
||||
0 2 3 2 1 2 2 data_268
|
||||
1 2 3 2 1 3 1 data_269
|
||||
0 2 3 2 1 3 2 data_270
|
||||
1 2 3 2 1 4 1 data_271
|
||||
0 2 3 2 1 4 2 data_272
|
||||
1 2 3 2 2 1 1 data_273
|
||||
0 2 3 2 2 1 2 data_274
|
||||
0 2 3 2 2 2 1 data_275
|
||||
0 2 3 2 2 2 2 data_276
|
||||
0 2 3 2 2 3 1 data_277
|
||||
0 2 3 2 2 3 2 data_278
|
||||
0 2 3 2 2 4 1 data_279
|
||||
0 2 3 2 2 4 2 data_280
|
||||
1 2 3 2 3 1 1 data_281
|
||||
0 2 3 2 3 1 2 data_282
|
||||
0 2 3 2 3 2 1 data_283
|
||||
0 2 3 2 3 2 2 data_284
|
||||
0 2 3 2 3 3 1 data_285
|
||||
0 2 3 2 3 3 2 data_286
|
||||
0 2 3 2 3 4 1 data_287
|
||||
0 2 3 2 3 4 2 data_288
|
||||
0 3 1 1 1 1 1 data_289
|
||||
0 3 1 1 1 1 2 data_290
|
||||
0 3 1 1 1 2 1 data_291
|
||||
0 3 1 1 1 2 2 data_292
|
||||
0 3 1 1 1 3 1 data_293
|
||||
0 3 1 1 1 3 2 data_294
|
||||
0 3 1 1 1 4 1 data_295
|
||||
0 3 1 1 1 4 2 data_296
|
||||
0 3 1 1 2 1 1 data_297
|
||||
0 3 1 1 2 1 2 data_298
|
||||
0 3 1 1 2 2 1 data_299
|
||||
1 3 1 1 2 2 2 data_300
|
||||
0 3 1 1 2 3 1 data_301
|
||||
1 3 1 1 2 3 2 data_302
|
||||
0 3 1 1 2 4 1 data_303
|
||||
1 3 1 1 2 4 2 data_304
|
||||
0 3 1 1 3 1 1 data_305
|
||||
0 3 1 1 3 1 2 data_306
|
||||
0 3 1 1 3 2 1 data_307
|
||||
1 3 1 1 3 2 2 data_308
|
||||
0 3 1 1 3 3 1 data_309
|
||||
1 3 1 1 3 3 2 data_310
|
||||
0 3 1 1 3 4 1 data_311
|
||||
1 3 1 1 3 4 2 data_312
|
||||
0 3 1 2 1 1 1 data_313
|
||||
0 3 1 2 1 1 2 data_314
|
||||
0 3 1 2 1 2 1 data_315
|
||||
1 3 1 2 1 2 2 data_316
|
||||
0 3 1 2 1 3 1 data_317
|
||||
1 3 1 2 1 3 2 data_318
|
||||
0 3 1 2 1 4 1 data_319
|
||||
1 3 1 2 1 4 2 data_320
|
||||
0 3 1 2 2 1 1 data_321
|
||||
1 3 1 2 2 1 2 data_322
|
||||
1 3 1 2 2 2 1 data_323
|
||||
0 3 1 2 2 2 2 data_324
|
||||
1 3 1 2 2 3 1 data_325
|
||||
0 3 1 2 2 3 2 data_326
|
||||
1 3 1 2 2 4 1 data_327
|
||||
0 3 1 2 2 4 2 data_328
|
||||
0 3 1 2 3 1 1 data_329
|
||||
1 3 1 2 3 1 2 data_330
|
||||
1 3 1 2 3 2 1 data_331
|
||||
0 3 1 2 3 2 2 data_332
|
||||
1 3 1 2 3 3 1 data_333
|
||||
0 3 1 2 3 3 2 data_334
|
||||
1 3 1 2 3 4 1 data_335
|
||||
0 3 1 2 3 4 2 data_336
|
||||
0 3 2 1 1 1 1 data_337
|
||||
0 3 2 1 1 1 2 data_338
|
||||
0 3 2 1 1 2 1 data_339
|
||||
1 3 2 1 1 2 2 data_340
|
||||
0 3 2 1 1 3 1 data_341
|
||||
1 3 2 1 1 3 2 data_342
|
||||
0 3 2 1 1 4 1 data_343
|
||||
1 3 2 1 1 4 2 data_344
|
||||
0 3 2 1 2 1 1 data_345
|
||||
1 3 2 1 2 1 2 data_346
|
||||
1 3 2 1 2 2 1 data_347
|
||||
0 3 2 1 2 2 2 data_348
|
||||
1 3 2 1 2 3 1 data_349
|
||||
0 3 2 1 2 3 2 data_350
|
||||
1 3 2 1 2 4 1 data_351
|
||||
0 3 2 1 2 4 2 data_352
|
||||
0 3 2 1 3 1 1 data_353
|
||||
1 3 2 1 3 1 2 data_354
|
||||
1 3 2 1 3 2 1 data_355
|
||||
0 3 2 1 3 2 2 data_356
|
||||
1 3 2 1 3 3 1 data_357
|
||||
0 3 2 1 3 3 2 data_358
|
||||
1 3 2 1 3 4 1 data_359
|
||||
0 3 2 1 3 4 2 data_360
|
||||
0 3 2 2 1 1 1 data_361
|
||||
1 3 2 2 1 1 2 data_362
|
||||
1 3 2 2 1 2 1 data_363
|
||||
0 3 2 2 1 2 2 data_364
|
||||
1 3 2 2 1 3 1 data_365
|
||||
0 3 2 2 1 3 2 data_366
|
||||
1 3 2 2 1 4 1 data_367
|
||||
0 3 2 2 1 4 2 data_368
|
||||
1 3 2 2 2 1 1 data_369
|
||||
0 3 2 2 2 1 2 data_370
|
||||
0 3 2 2 2 2 1 data_371
|
||||
0 3 2 2 2 2 2 data_372
|
||||
0 3 2 2 2 3 1 data_373
|
||||
0 3 2 2 2 3 2 data_374
|
||||
0 3 2 2 2 4 1 data_375
|
||||
0 3 2 2 2 4 2 data_376
|
||||
1 3 2 2 3 1 1 data_377
|
||||
0 3 2 2 3 1 2 data_378
|
||||
0 3 2 2 3 2 1 data_379
|
||||
0 3 2 2 3 2 2 data_380
|
||||
0 3 2 2 3 3 1 data_381
|
||||
0 3 2 2 3 3 2 data_382
|
||||
0 3 2 2 3 4 1 data_383
|
||||
0 3 2 2 3 4 2 data_384
|
||||
0 3 3 1 1 1 1 data_385
|
||||
0 3 3 1 1 1 2 data_386
|
||||
0 3 3 1 1 2 1 data_387
|
||||
1 3 3 1 1 2 2 data_388
|
||||
0 3 3 1 1 3 1 data_389
|
||||
1 3 3 1 1 3 2 data_390
|
||||
0 3 3 1 1 4 1 data_391
|
||||
1 3 3 1 1 4 2 data_392
|
||||
0 3 3 1 2 1 1 data_393
|
||||
1 3 3 1 2 1 2 data_394
|
||||
1 3 3 1 2 2 1 data_395
|
||||
0 3 3 1 2 2 2 data_396
|
||||
1 3 3 1 2 3 1 data_397
|
||||
0 3 3 1 2 3 2 data_398
|
||||
1 3 3 1 2 4 1 data_399
|
||||
0 3 3 1 2 4 2 data_400
|
||||
0 3 3 1 3 1 1 data_401
|
||||
1 3 3 1 3 1 2 data_402
|
||||
1 3 3 1 3 2 1 data_403
|
||||
0 3 3 1 3 2 2 data_404
|
||||
1 3 3 1 3 3 1 data_405
|
||||
0 3 3 1 3 3 2 data_406
|
||||
1 3 3 1 3 4 1 data_407
|
||||
0 3 3 1 3 4 2 data_408
|
||||
0 3 3 2 1 1 1 data_409
|
||||
1 3 3 2 1 1 2 data_410
|
||||
1 3 3 2 1 2 1 data_411
|
||||
0 3 3 2 1 2 2 data_412
|
||||
1 3 3 2 1 3 1 data_413
|
||||
0 3 3 2 1 3 2 data_414
|
||||
1 3 3 2 1 4 1 data_415
|
||||
0 3 3 2 1 4 2 data_416
|
||||
1 3 3 2 2 1 1 data_417
|
||||
0 3 3 2 2 1 2 data_418
|
||||
0 3 3 2 2 2 1 data_419
|
||||
0 3 3 2 2 2 2 data_420
|
||||
0 3 3 2 2 3 1 data_421
|
||||
0 3 3 2 2 3 2 data_422
|
||||
0 3 3 2 2 4 1 data_423
|
||||
0 3 3 2 2 4 2 data_424
|
||||
1 3 3 2 3 1 1 data_425
|
||||
0 3 3 2 3 1 2 data_426
|
||||
0 3 3 2 3 2 1 data_427
|
||||
0 3 3 2 3 2 2 data_428
|
||||
0 3 3 2 3 3 1 data_429
|
||||
0 3 3 2 3 3 2 data_430
|
||||
0 3 3 2 3 4 1 data_431
|
||||
0 3 3 2 3 4 2 data_432
|
169
Code/datasets/monks-2.train
Normal file
169
Code/datasets/monks-2.train
Normal file
|
@ -0,0 +1,169 @@
|
|||
0 1 1 1 1 2 2 data_4
|
||||
0 1 1 1 1 4 1 data_7
|
||||
0 1 1 1 2 1 1 data_9
|
||||
0 1 1 1 2 1 2 data_10
|
||||
0 1 1 1 2 2 1 data_11
|
||||
0 1 1 1 2 3 1 data_13
|
||||
0 1 1 1 2 4 1 data_15
|
||||
0 1 1 1 3 2 1 data_19
|
||||
0 1 1 1 3 4 1 data_23
|
||||
0 1 1 2 1 1 1 data_25
|
||||
0 1 1 2 1 1 2 data_26
|
||||
0 1 1 2 2 3 1 data_37
|
||||
0 1 1 2 2 4 1 data_39
|
||||
1 1 1 2 2 4 2 data_40
|
||||
0 1 1 2 3 1 2 data_42
|
||||
1 1 1 2 3 2 2 data_44
|
||||
0 1 2 1 1 1 2 data_50
|
||||
0 1 2 1 2 1 2 data_58
|
||||
1 1 2 1 2 2 2 data_60
|
||||
0 1 2 1 2 3 1 data_61
|
||||
1 1 2 1 2 3 2 data_62
|
||||
0 1 2 1 2 4 1 data_63
|
||||
0 1 2 1 3 1 1 data_65
|
||||
0 1 2 1 3 1 2 data_66
|
||||
1 1 2 1 3 2 2 data_68
|
||||
0 1 2 1 3 3 1 data_69
|
||||
1 1 2 1 3 3 2 data_70
|
||||
0 1 2 1 3 4 1 data_71
|
||||
1 1 2 1 3 4 2 data_72
|
||||
0 1 2 2 1 2 1 data_75
|
||||
0 1 2 2 1 4 1 data_79
|
||||
1 1 2 2 2 3 1 data_85
|
||||
1 1 2 2 2 4 1 data_87
|
||||
0 1 2 2 3 1 1 data_89
|
||||
1 1 2 2 3 1 2 data_90
|
||||
1 1 2 2 3 3 1 data_93
|
||||
0 1 2 2 3 3 2 data_94
|
||||
1 1 2 2 3 4 1 data_95
|
||||
0 1 2 2 3 4 2 data_96
|
||||
0 1 3 1 1 1 2 data_98
|
||||
0 1 3 1 1 2 2 data_100
|
||||
0 1 3 1 1 3 1 data_101
|
||||
0 1 3 1 1 3 2 data_102
|
||||
0 1 3 1 2 2 1 data_107
|
||||
1 1 3 1 2 2 2 data_108
|
||||
1 1 3 1 2 3 2 data_110
|
||||
0 1 3 1 2 4 1 data_111
|
||||
1 1 3 1 3 2 2 data_116
|
||||
0 1 3 1 3 3 1 data_117
|
||||
1 1 3 1 3 4 2 data_120
|
||||
0 1 3 2 1 3 1 data_125
|
||||
1 1 3 2 1 3 2 data_126
|
||||
0 1 3 2 1 4 1 data_127
|
||||
1 1 3 2 2 1 2 data_130
|
||||
0 1 3 2 2 3 2 data_134
|
||||
0 1 3 2 2 4 2 data_136
|
||||
1 1 3 2 3 2 1 data_139
|
||||
0 2 1 1 1 1 1 data_145
|
||||
0 2 1 1 1 2 2 data_148
|
||||
0 2 1 1 1 3 1 data_149
|
||||
1 2 1 1 2 2 2 data_156
|
||||
0 2 1 1 3 1 2 data_162
|
||||
1 2 1 1 3 2 2 data_164
|
||||
1 2 1 1 3 3 2 data_166
|
||||
0 2 1 1 3 4 1 data_167
|
||||
0 2 1 2 1 1 1 data_169
|
||||
1 2 1 2 1 2 2 data_172
|
||||
0 2 1 2 1 4 1 data_175
|
||||
1 2 1 2 2 2 1 data_179
|
||||
0 2 1 2 2 4 2 data_184
|
||||
0 2 1 2 3 1 1 data_185
|
||||
1 2 1 2 3 1 2 data_186
|
||||
0 2 1 2 3 2 2 data_188
|
||||
0 2 1 2 3 3 2 data_190
|
||||
0 2 1 2 3 4 2 data_192
|
||||
0 2 2 1 1 3 1 data_197
|
||||
1 2 2 1 1 4 2 data_200
|
||||
0 2 2 1 2 1 1 data_201
|
||||
1 2 2 1 2 3 1 data_205
|
||||
1 2 2 1 3 3 1 data_213
|
||||
0 2 2 1 3 3 2 data_214
|
||||
1 2 2 1 3 4 1 data_215
|
||||
0 2 2 2 1 1 1 data_217
|
||||
0 2 2 2 1 2 2 data_220
|
||||
0 2 2 2 1 3 2 data_222
|
||||
1 2 2 2 1 4 1 data_223
|
||||
0 2 2 2 1 4 2 data_224
|
||||
1 2 2 2 2 1 1 data_225
|
||||
0 2 2 2 2 2 2 data_228
|
||||
0 2 2 2 2 3 1 data_229
|
||||
1 2 2 2 3 1 1 data_233
|
||||
0 2 2 2 3 2 1 data_235
|
||||
0 2 2 2 3 2 2 data_236
|
||||
0 2 2 2 3 4 2 data_240
|
||||
0 2 3 1 1 1 1 data_241
|
||||
0 2 3 1 1 1 2 data_242
|
||||
1 2 3 1 1 3 2 data_246
|
||||
0 2 3 1 2 1 1 data_249
|
||||
1 2 3 1 2 3 1 data_253
|
||||
0 2 3 1 2 3 2 data_254
|
||||
0 2 3 1 2 4 2 data_256
|
||||
1 2 3 1 3 1 2 data_258
|
||||
1 2 3 1 3 2 1 data_259
|
||||
1 2 3 1 3 4 1 data_263
|
||||
1 2 3 2 1 1 2 data_266
|
||||
1 2 3 2 1 2 1 data_267
|
||||
1 2 3 2 1 3 1 data_269
|
||||
0 2 3 2 1 4 2 data_272
|
||||
1 2 3 2 2 1 1 data_273
|
||||
0 2 3 2 2 2 1 data_275
|
||||
0 2 3 2 2 3 2 data_278
|
||||
0 2 3 2 3 3 1 data_285
|
||||
0 2 3 2 3 3 2 data_286
|
||||
0 2 3 2 3 4 2 data_288
|
||||
0 3 1 1 1 4 1 data_295
|
||||
0 3 1 1 2 1 2 data_298
|
||||
1 3 1 1 2 2 2 data_300
|
||||
1 3 1 1 2 3 2 data_302
|
||||
0 3 1 1 2 4 1 data_303
|
||||
1 3 1 1 2 4 2 data_304
|
||||
0 3 1 1 3 1 1 data_305
|
||||
0 3 1 1 3 1 2 data_306
|
||||
1 3 1 1 3 2 2 data_308
|
||||
1 3 1 1 3 3 2 data_310
|
||||
0 3 1 2 1 1 1 data_313
|
||||
1 3 1 2 1 2 2 data_316
|
||||
0 3 1 2 1 3 1 data_317
|
||||
1 3 1 2 1 3 2 data_318
|
||||
0 3 1 2 1 4 1 data_319
|
||||
1 3 1 2 1 4 2 data_320
|
||||
1 3 1 2 2 2 1 data_323
|
||||
1 3 1 2 3 1 2 data_330
|
||||
1 3 1 2 3 2 1 data_331
|
||||
0 3 1 2 3 2 2 data_332
|
||||
0 3 1 2 3 4 2 data_336
|
||||
0 3 2 1 1 1 2 data_338
|
||||
1 3 2 1 1 2 2 data_340
|
||||
0 3 2 1 1 3 1 data_341
|
||||
1 3 2 1 1 3 2 data_342
|
||||
1 3 2 1 2 1 2 data_346
|
||||
1 3 2 1 2 2 1 data_347
|
||||
0 3 2 1 3 1 1 data_353
|
||||
1 3 2 1 3 2 1 data_355
|
||||
1 3 2 1 3 3 1 data_357
|
||||
0 3 2 1 3 3 2 data_358
|
||||
0 3 2 2 1 1 1 data_361
|
||||
0 3 2 2 1 2 2 data_364
|
||||
1 3 2 2 1 3 1 data_365
|
||||
0 3 2 2 1 3 2 data_366
|
||||
1 3 2 2 2 1 1 data_369
|
||||
0 3 2 2 2 2 1 data_371
|
||||
0 3 2 2 2 2 2 data_372
|
||||
0 3 2 2 2 3 2 data_374
|
||||
1 3 2 2 3 1 1 data_377
|
||||
0 3 2 2 3 3 2 data_382
|
||||
0 3 2 2 3 4 2 data_384
|
||||
0 3 3 1 1 1 1 data_385
|
||||
0 3 3 1 1 2 1 data_387
|
||||
0 3 3 1 1 3 1 data_389
|
||||
1 3 3 1 1 3 2 data_390
|
||||
0 3 3 1 2 3 2 data_398
|
||||
0 3 3 2 1 1 1 data_409
|
||||
1 3 3 2 2 1 1 data_417
|
||||
0 3 3 2 2 2 1 data_419
|
||||
0 3 3 2 2 3 1 data_421
|
||||
0 3 3 2 2 3 2 data_422
|
||||
1 3 3 2 3 1 1 data_425
|
||||
0 3 3 2 3 2 1 data_427
|
||||
0 3 3 2 3 4 2 data_432
|
432
Code/datasets/monks-3.test
Normal file
432
Code/datasets/monks-3.test
Normal file
|
@ -0,0 +1,432 @@
|
|||
1 1 1 1 1 1 1 data_1
|
||||
1 1 1 1 1 1 2 data_2
|
||||
1 1 1 1 1 2 1 data_3
|
||||
1 1 1 1 1 2 2 data_4
|
||||
1 1 1 1 1 3 1 data_5
|
||||
1 1 1 1 1 3 2 data_6
|
||||
0 1 1 1 1 4 1 data_7
|
||||
0 1 1 1 1 4 2 data_8
|
||||
1 1 1 1 2 1 1 data_9
|
||||
1 1 1 1 2 1 2 data_10
|
||||
1 1 1 1 2 2 1 data_11
|
||||
1 1 1 1 2 2 2 data_12
|
||||
1 1 1 1 2 3 1 data_13
|
||||
1 1 1 1 2 3 2 data_14
|
||||
0 1 1 1 2 4 1 data_15
|
||||
0 1 1 1 2 4 2 data_16
|
||||
1 1 1 1 3 1 1 data_17
|
||||
1 1 1 1 3 1 2 data_18
|
||||
1 1 1 1 3 2 1 data_19
|
||||
1 1 1 1 3 2 2 data_20
|
||||
1 1 1 1 3 3 1 data_21
|
||||
1 1 1 1 3 3 2 data_22
|
||||
0 1 1 1 3 4 1 data_23
|
||||
0 1 1 1 3 4 2 data_24
|
||||
1 1 1 2 1 1 1 data_25
|
||||
1 1 1 2 1 1 2 data_26
|
||||
1 1 1 2 1 2 1 data_27
|
||||
1 1 1 2 1 2 2 data_28
|
||||
1 1 1 2 1 3 1 data_29
|
||||
1 1 1 2 1 3 2 data_30
|
||||
0 1 1 2 1 4 1 data_31
|
||||
0 1 1 2 1 4 2 data_32
|
||||
1 1 1 2 2 1 1 data_33
|
||||
1 1 1 2 2 1 2 data_34
|
||||
1 1 1 2 2 2 1 data_35
|
||||
1 1 1 2 2 2 2 data_36
|
||||
1 1 1 2 2 3 1 data_37
|
||||
1 1 1 2 2 3 2 data_38
|
||||
0 1 1 2 2 4 1 data_39
|
||||
0 1 1 2 2 4 2 data_40
|
||||
1 1 1 2 3 1 1 data_41
|
||||
1 1 1 2 3 1 2 data_42
|
||||
1 1 1 2 3 2 1 data_43
|
||||
1 1 1 2 3 2 2 data_44
|
||||
1 1 1 2 3 3 1 data_45
|
||||
1 1 1 2 3 3 2 data_46
|
||||
0 1 1 2 3 4 1 data_47
|
||||
0 1 1 2 3 4 2 data_48
|
||||
1 1 2 1 1 1 1 data_49
|
||||
1 1 2 1 1 1 2 data_50
|
||||
1 1 2 1 1 2 1 data_51
|
||||
1 1 2 1 1 2 2 data_52
|
||||
1 1 2 1 1 3 1 data_53
|
||||
1 1 2 1 1 3 2 data_54
|
||||
0 1 2 1 1 4 1 data_55
|
||||
0 1 2 1 1 4 2 data_56
|
||||
1 1 2 1 2 1 1 data_57
|
||||
1 1 2 1 2 1 2 data_58
|
||||
1 1 2 1 2 2 1 data_59
|
||||
1 1 2 1 2 2 2 data_60
|
||||
1 1 2 1 2 3 1 data_61
|
||||
1 1 2 1 2 3 2 data_62
|
||||
0 1 2 1 2 4 1 data_63
|
||||
0 1 2 1 2 4 2 data_64
|
||||
1 1 2 1 3 1 1 data_65
|
||||
1 1 2 1 3 1 2 data_66
|
||||
1 1 2 1 3 2 1 data_67
|
||||
1 1 2 1 3 2 2 data_68
|
||||
1 1 2 1 3 3 1 data_69
|
||||
1 1 2 1 3 3 2 data_70
|
||||
0 1 2 1 3 4 1 data_71
|
||||
0 1 2 1 3 4 2 data_72
|
||||
1 1 2 2 1 1 1 data_73
|
||||
1 1 2 2 1 1 2 data_74
|
||||
1 1 2 2 1 2 1 data_75
|
||||
1 1 2 2 1 2 2 data_76
|
||||
1 1 2 2 1 3 1 data_77
|
||||
1 1 2 2 1 3 2 data_78
|
||||
0 1 2 2 1 4 1 data_79
|
||||
0 1 2 2 1 4 2 data_80
|
||||
1 1 2 2 2 1 1 data_81
|
||||
1 1 2 2 2 1 2 data_82
|
||||
1 1 2 2 2 2 1 data_83
|
||||
1 1 2 2 2 2 2 data_84
|
||||
1 1 2 2 2 3 1 data_85
|
||||
1 1 2 2 2 3 2 data_86
|
||||
0 1 2 2 2 4 1 data_87
|
||||
0 1 2 2 2 4 2 data_88
|
||||
1 1 2 2 3 1 1 data_89
|
||||
1 1 2 2 3 1 2 data_90
|
||||
1 1 2 2 3 2 1 data_91
|
||||
1 1 2 2 3 2 2 data_92
|
||||
1 1 2 2 3 3 1 data_93
|
||||
1 1 2 2 3 3 2 data_94
|
||||
0 1 2 2 3 4 1 data_95
|
||||
0 1 2 2 3 4 2 data_96
|
||||
0 1 3 1 1 1 1 data_97
|
||||
0 1 3 1 1 1 2 data_98
|
||||
0 1 3 1 1 2 1 data_99
|
||||
0 1 3 1 1 2 2 data_100
|
||||
1 1 3 1 1 3 1 data_101
|
||||
1 1 3 1 1 3 2 data_102
|
||||
0 1 3 1 1 4 1 data_103
|
||||
0 1 3 1 1 4 2 data_104
|
||||
0 1 3 1 2 1 1 data_105
|
||||
0 1 3 1 2 1 2 data_106
|
||||
0 1 3 1 2 2 1 data_107
|
||||
0 1 3 1 2 2 2 data_108
|
||||
0 1 3 1 2 3 1 data_109
|
||||
0 1 3 1 2 3 2 data_110
|
||||
0 1 3 1 2 4 1 data_111
|
||||
0 1 3 1 2 4 2 data_112
|
||||
0 1 3 1 3 1 1 data_113
|
||||
0 1 3 1 3 1 2 data_114
|
||||
0 1 3 1 3 2 1 data_115
|
||||
0 1 3 1 3 2 2 data_116
|
||||
0 1 3 1 3 3 1 data_117
|
||||
0 1 3 1 3 3 2 data_118
|
||||
0 1 3 1 3 4 1 data_119
|
||||
0 1 3 1 3 4 2 data_120
|
||||
0 1 3 2 1 1 1 data_121
|
||||
0 1 3 2 1 1 2 data_122
|
||||
0 1 3 2 1 2 1 data_123
|
||||
0 1 3 2 1 2 2 data_124
|
||||
1 1 3 2 1 3 1 data_125
|
||||
1 1 3 2 1 3 2 data_126
|
||||
0 1 3 2 1 4 1 data_127
|
||||
0 1 3 2 1 4 2 data_128
|
||||
0 1 3 2 2 1 1 data_129
|
||||
0 1 3 2 2 1 2 data_130
|
||||
0 1 3 2 2 2 1 data_131
|
||||
0 1 3 2 2 2 2 data_132
|
||||
0 1 3 2 2 3 1 data_133
|
||||
0 1 3 2 2 3 2 data_134
|
||||
0 1 3 2 2 4 1 data_135
|
||||
0 1 3 2 2 4 2 data_136
|
||||
0 1 3 2 3 1 1 data_137
|
||||
0 1 3 2 3 1 2 data_138
|
||||
0 1 3 2 3 2 1 data_139
|
||||
0 1 3 2 3 2 2 data_140
|
||||
0 1 3 2 3 3 1 data_141
|
||||
0 1 3 2 3 3 2 data_142
|
||||
0 1 3 2 3 4 1 data_143
|
||||
0 1 3 2 3 4 2 data_144
|
||||
1 2 1 1 1 1 1 data_145
|
||||
1 2 1 1 1 1 2 data_146
|
||||
1 2 1 1 1 2 1 data_147
|
||||
1 2 1 1 1 2 2 data_148
|
||||
1 2 1 1 1 3 1 data_149
|
||||
1 2 1 1 1 3 2 data_150
|
||||
0 2 1 1 1 4 1 data_151
|
||||
0 2 1 1 1 4 2 data_152
|
||||
1 2 1 1 2 1 1 data_153
|
||||
1 2 1 1 2 1 2 data_154
|
||||
1 2 1 1 2 2 1 data_155
|
||||
1 2 1 1 2 2 2 data_156
|
||||
1 2 1 1 2 3 1 data_157
|
||||
1 2 1 1 2 3 2 data_158
|
||||
0 2 1 1 2 4 1 data_159
|
||||
0 2 1 1 2 4 2 data_160
|
||||
1 2 1 1 3 1 1 data_161
|
||||
1 2 1 1 3 1 2 data_162
|
||||
1 2 1 1 3 2 1 data_163
|
||||
1 2 1 1 3 2 2 data_164
|
||||
1 2 1 1 3 3 1 data_165
|
||||
1 2 1 1 3 3 2 data_166
|
||||
0 2 1 1 3 4 1 data_167
|
||||
0 2 1 1 3 4 2 data_168
|
||||
1 2 1 2 1 1 1 data_169
|
||||
1 2 1 2 1 1 2 data_170
|
||||
1 2 1 2 1 2 1 data_171
|
||||
1 2 1 2 1 2 2 data_172
|
||||
1 2 1 2 1 3 1 data_173
|
||||
1 2 1 2 1 3 2 data_174
|
||||
0 2 1 2 1 4 1 data_175
|
||||
0 2 1 2 1 4 2 data_176
|
||||
1 2 1 2 2 1 1 data_177
|
||||
1 2 1 2 2 1 2 data_178
|
||||
1 2 1 2 2 2 1 data_179
|
||||
1 2 1 2 2 2 2 data_180
|
||||
1 2 1 2 2 3 1 data_181
|
||||
1 2 1 2 2 3 2 data_182
|
||||
0 2 1 2 2 4 1 data_183
|
||||
0 2 1 2 2 4 2 data_184
|
||||
1 2 1 2 3 1 1 data_185
|
||||
1 2 1 2 3 1 2 data_186
|
||||
1 2 1 2 3 2 1 data_187
|
||||
1 2 1 2 3 2 2 data_188
|
||||
1 2 1 2 3 3 1 data_189
|
||||
1 2 1 2 3 3 2 data_190
|
||||
0 2 1 2 3 4 1 data_191
|
||||
0 2 1 2 3 4 2 data_192
|
||||
1 2 2 1 1 1 1 data_193
|
||||
1 2 2 1 1 1 2 data_194
|
||||
1 2 2 1 1 2 1 data_195
|
||||
1 2 2 1 1 2 2 data_196
|
||||
1 2 2 1 1 3 1 data_197
|
||||
1 2 2 1 1 3 2 data_198
|
||||
0 2 2 1 1 4 1 data_199
|
||||
0 2 2 1 1 4 2 data_200
|
||||
1 2 2 1 2 1 1 data_201
|
||||
1 2 2 1 2 1 2 data_202
|
||||
1 2 2 1 2 2 1 data_203
|
||||
1 2 2 1 2 2 2 data_204
|
||||
1 2 2 1 2 3 1 data_205
|
||||
1 2 2 1 2 3 2 data_206
|
||||
0 2 2 1 2 4 1 data_207
|
||||
0 2 2 1 2 4 2 data_208
|
||||
1 2 2 1 3 1 1 data_209
|
||||
1 2 2 1 3 1 2 data_210
|
||||
1 2 2 1 3 2 1 data_211
|
||||
1 2 2 1 3 2 2 data_212
|
||||
1 2 2 1 3 3 1 data_213
|
||||
1 2 2 1 3 3 2 data_214
|
||||
0 2 2 1 3 4 1 data_215
|
||||
0 2 2 1 3 4 2 data_216
|
||||
1 2 2 2 1 1 1 data_217
|
||||
1 2 2 2 1 1 2 data_218
|
||||
1 2 2 2 1 2 1 data_219
|
||||
1 2 2 2 1 2 2 data_220
|
||||
1 2 2 2 1 3 1 data_221
|
||||
1 2 2 2 1 3 2 data_222
|
||||
0 2 2 2 1 4 1 data_223
|
||||
0 2 2 2 1 4 2 data_224
|
||||
1 2 2 2 2 1 1 data_225
|
||||
1 2 2 2 2 1 2 data_226
|
||||
1 2 2 2 2 2 1 data_227
|
||||
1 2 2 2 2 2 2 data_228
|
||||
1 2 2 2 2 3 1 data_229
|
||||
1 2 2 2 2 3 2 data_230
|
||||
0 2 2 2 2 4 1 data_231
|
||||
0 2 2 2 2 4 2 data_232
|
||||
1 2 2 2 3 1 1 data_233
|
||||
1 2 2 2 3 1 2 data_234
|
||||
1 2 2 2 3 2 1 data_235
|
||||
1 2 2 2 3 2 2 data_236
|
||||
1 2 2 2 3 3 1 data_237
|
||||
1 2 2 2 3 3 2 data_238
|
||||
0 2 2 2 3 4 1 data_239
|
||||
0 2 2 2 3 4 2 data_240
|
||||
0 2 3 1 1 1 1 data_241
|
||||
0 2 3 1 1 1 2 data_242
|
||||
0 2 3 1 1 2 1 data_243
|
||||
0 2 3 1 1 2 2 data_244
|
||||
1 2 3 1 1 3 1 data_245
|
||||
1 2 3 1 1 3 2 data_246
|
||||
0 2 3 1 1 4 1 data_247
|
||||
0 2 3 1 1 4 2 data_248
|
||||
0 2 3 1 2 1 1 data_249
|
||||
0 2 3 1 2 1 2 data_250
|
||||
0 2 3 1 2 2 1 data_251
|
||||
0 2 3 1 2 2 2 data_252
|
||||
0 2 3 1 2 3 1 data_253
|
||||
0 2 3 1 2 3 2 data_254
|
||||
0 2 3 1 2 4 1 data_255
|
||||
0 2 3 1 2 4 2 data_256
|
||||
0 2 3 1 3 1 1 data_257
|
||||
0 2 3 1 3 1 2 data_258
|
||||
0 2 3 1 3 2 1 data_259
|
||||
0 2 3 1 3 2 2 data_260
|
||||
0 2 3 1 3 3 1 data_261
|
||||
0 2 3 1 3 3 2 data_262
|
||||
0 2 3 1 3 4 1 data_263
|
||||
0 2 3 1 3 4 2 data_264
|
||||
0 2 3 2 1 1 1 data_265
|
||||
0 2 3 2 1 1 2 data_266
|
||||
0 2 3 2 1 2 1 data_267
|
||||
0 2 3 2 1 2 2 data_268
|
||||
1 2 3 2 1 3 1 data_269
|
||||
1 2 3 2 1 3 2 data_270
|
||||
0 2 3 2 1 4 1 data_271
|
||||
0 2 3 2 1 4 2 data_272
|
||||
0 2 3 2 2 1 1 data_273
|
||||
0 2 3 2 2 1 2 data_274
|
||||
0 2 3 2 2 2 1 data_275
|
||||
0 2 3 2 2 2 2 data_276
|
||||
0 2 3 2 2 3 1 data_277
|
||||
0 2 3 2 2 3 2 data_278
|
||||
0 2 3 2 2 4 1 data_279
|
||||
0 2 3 2 2 4 2 data_280
|
||||
0 2 3 2 3 1 1 data_281
|
||||
0 2 3 2 3 1 2 data_282
|
||||
0 2 3 2 3 2 1 data_283
|
||||
0 2 3 2 3 2 2 data_284
|
||||
0 2 3 2 3 3 1 data_285
|
||||
0 2 3 2 3 3 2 data_286
|
||||
0 2 3 2 3 4 1 data_287
|
||||
0 2 3 2 3 4 2 data_288
|
||||
1 3 1 1 1 1 1 data_289
|
||||
1 3 1 1 1 1 2 data_290
|
||||
1 3 1 1 1 2 1 data_291
|
||||
1 3 1 1 1 2 2 data_292
|
||||
1 3 1 1 1 3 1 data_293
|
||||
1 3 1 1 1 3 2 data_294
|
||||
0 3 1 1 1 4 1 data_295
|
||||
0 3 1 1 1 4 2 data_296
|
||||
1 3 1 1 2 1 1 data_297
|
||||
1 3 1 1 2 1 2 data_298
|
||||
1 3 1 1 2 2 1 data_299
|
||||
1 3 1 1 2 2 2 data_300
|
||||
1 3 1 1 2 3 1 data_301
|
||||
1 3 1 1 2 3 2 data_302
|
||||
0 3 1 1 2 4 1 data_303
|
||||
0 3 1 1 2 4 2 data_304
|
||||
1 3 1 1 3 1 1 data_305
|
||||
1 3 1 1 3 1 2 data_306
|
||||
1 3 1 1 3 2 1 data_307
|
||||
1 3 1 1 3 2 2 data_308
|
||||
1 3 1 1 3 3 1 data_309
|
||||
1 3 1 1 3 3 2 data_310
|
||||
0 3 1 1 3 4 1 data_311
|
||||
0 3 1 1 3 4 2 data_312
|
||||
1 3 1 2 1 1 1 data_313
|
||||
1 3 1 2 1 1 2 data_314
|
||||
1 3 1 2 1 2 1 data_315
|
||||
1 3 1 2 1 2 2 data_316
|
||||
1 3 1 2 1 3 1 data_317
|
||||
1 3 1 2 1 3 2 data_318
|
||||
0 3 1 2 1 4 1 data_319
|
||||
0 3 1 2 1 4 2 data_320
|
||||
1 3 1 2 2 1 1 data_321
|
||||
1 3 1 2 2 1 2 data_322
|
||||
1 3 1 2 2 2 1 data_323
|
||||
1 3 1 2 2 2 2 data_324
|
||||
1 3 1 2 2 3 1 data_325
|
||||
1 3 1 2 2 3 2 data_326
|
||||
0 3 1 2 2 4 1 data_327
|
||||
0 3 1 2 2 4 2 data_328
|
||||
1 3 1 2 3 1 1 data_329
|
||||
1 3 1 2 3 1 2 data_330
|
||||
1 3 1 2 3 2 1 data_331
|
||||
1 3 1 2 3 2 2 data_332
|
||||
1 3 1 2 3 3 1 data_333
|
||||
1 3 1 2 3 3 2 data_334
|
||||
0 3 1 2 3 4 1 data_335
|
||||
0 3 1 2 3 4 2 data_336
|
||||
1 3 2 1 1 1 1 data_337
|
||||
1 3 2 1 1 1 2 data_338
|
||||
1 3 2 1 1 2 1 data_339
|
||||
1 3 2 1 1 2 2 data_340
|
||||
1 3 2 1 1 3 1 data_341
|
||||
1 3 2 1 1 3 2 data_342
|
||||
0 3 2 1 1 4 1 data_343
|
||||
0 3 2 1 1 4 2 data_344
|
||||
1 3 2 1 2 1 1 data_345
|
||||
1 3 2 1 2 1 2 data_346
|
||||
1 3 2 1 2 2 1 data_347
|
||||
1 3 2 1 2 2 2 data_348
|
||||
1 3 2 1 2 3 1 data_349
|
||||
1 3 2 1 2 3 2 data_350
|
||||
0 3 2 1 2 4 1 data_351
|
||||
0 3 2 1 2 4 2 data_352
|
||||
1 3 2 1 3 1 1 data_353
|
||||
1 3 2 1 3 1 2 data_354
|
||||
1 3 2 1 3 2 1 data_355
|
||||
1 3 2 1 3 2 2 data_356
|
||||
1 3 2 1 3 3 1 data_357
|
||||
1 3 2 1 3 3 2 data_358
|
||||
0 3 2 1 3 4 1 data_359
|
||||
0 3 2 1 3 4 2 data_360
|
||||
1 3 2 2 1 1 1 data_361
|
||||
1 3 2 2 1 1 2 data_362
|
||||
1 3 2 2 1 2 1 data_363
|
||||
1 3 2 2 1 2 2 data_364
|
||||
1 3 2 2 1 3 1 data_365
|
||||
1 3 2 2 1 3 2 data_366
|
||||
0 3 2 2 1 4 1 data_367
|
||||
0 3 2 2 1 4 2 data_368
|
||||
1 3 2 2 2 1 1 data_369
|
||||
1 3 2 2 2 1 2 data_370
|
||||
1 3 2 2 2 2 1 data_371
|
||||
1 3 2 2 2 2 2 data_372
|
||||
1 3 2 2 2 3 1 data_373
|
||||
1 3 2 2 2 3 2 data_374
|
||||
0 3 2 2 2 4 1 data_375
|
||||
0 3 2 2 2 4 2 data_376
|
||||
1 3 2 2 3 1 1 data_377
|
||||
1 3 2 2 3 1 2 data_378
|
||||
1 3 2 2 3 2 1 data_379
|
||||
1 3 2 2 3 2 2 data_380
|
||||
1 3 2 2 3 3 1 data_381
|
||||
1 3 2 2 3 3 2 data_382
|
||||
0 3 2 2 3 4 1 data_383
|
||||
0 3 2 2 3 4 2 data_384
|
||||
0 3 3 1 1 1 1 data_385
|
||||
0 3 3 1 1 1 2 data_386
|
||||
0 3 3 1 1 2 1 data_387
|
||||
0 3 3 1 1 2 2 data_388
|
||||
1 3 3 1 1 3 1 data_389
|
||||
1 3 3 1 1 3 2 data_390
|
||||
0 3 3 1 1 4 1 data_391
|
||||
0 3 3 1 1 4 2 data_392
|
||||
0 3 3 1 2 1 1 data_393
|
||||
0 3 3 1 2 1 2 data_394
|
||||
0 3 3 1 2 2 1 data_395
|
||||
0 3 3 1 2 2 2 data_396
|
||||
0 3 3 1 2 3 1 data_397
|
||||
0 3 3 1 2 3 2 data_398
|
||||
0 3 3 1 2 4 1 data_399
|
||||
0 3 3 1 2 4 2 data_400
|
||||
0 3 3 1 3 1 1 data_401
|
||||
0 3 3 1 3 1 2 data_402
|
||||
0 3 3 1 3 2 1 data_403
|
||||
0 3 3 1 3 2 2 data_404
|
||||
0 3 3 1 3 3 1 data_405
|
||||
0 3 3 1 3 3 2 data_406
|
||||
0 3 3 1 3 4 1 data_407
|
||||
0 3 3 1 3 4 2 data_408
|
||||
0 3 3 2 1 1 1 data_409
|
||||
0 3 3 2 1 1 2 data_410
|
||||
0 3 3 2 1 2 1 data_411
|
||||
0 3 3 2 1 2 2 data_412
|
||||
1 3 3 2 1 3 1 data_413
|
||||
1 3 3 2 1 3 2 data_414
|
||||
0 3 3 2 1 4 1 data_415
|
||||
0 3 3 2 1 4 2 data_416
|
||||
0 3 3 2 2 1 1 data_417
|
||||
0 3 3 2 2 1 2 data_418
|
||||
0 3 3 2 2 2 1 data_419
|
||||
0 3 3 2 2 2 2 data_420
|
||||
0 3 3 2 2 3 1 data_421
|
||||
0 3 3 2 2 3 2 data_422
|
||||
0 3 3 2 2 4 1 data_423
|
||||
0 3 3 2 2 4 2 data_424
|
||||
0 3 3 2 3 1 1 data_425
|
||||
0 3 3 2 3 1 2 data_426
|
||||
0 3 3 2 3 2 1 data_427
|
||||
0 3 3 2 3 2 2 data_428
|
||||
0 3 3 2 3 3 1 data_429
|
||||
0 3 3 2 3 3 2 data_430
|
||||
0 3 3 2 3 4 1 data_431
|
||||
0 3 3 2 3 4 2 data_432
|
122
Code/datasets/monks-3.train
Normal file
122
Code/datasets/monks-3.train
Normal file
|
@ -0,0 +1,122 @@
|
|||
1 1 1 1 1 1 2 data_2
|
||||
1 1 1 1 1 2 1 data_3
|
||||
1 1 1 1 1 2 2 data_4
|
||||
0 1 1 1 1 3 1 data_5
|
||||
0 1 1 1 1 4 1 data_7
|
||||
1 1 1 1 2 1 1 data_9
|
||||
1 1 1 1 2 2 2 data_12
|
||||
0 1 1 1 2 4 2 data_16
|
||||
1 1 1 2 1 2 2 data_28
|
||||
0 1 1 2 1 4 2 data_32
|
||||
1 1 1 2 2 2 2 data_36
|
||||
0 1 1 2 2 4 1 data_39
|
||||
0 1 1 2 2 4 2 data_40
|
||||
1 1 1 2 3 1 1 data_41
|
||||
1 1 1 2 3 1 2 data_42
|
||||
1 1 1 2 3 3 1 data_45
|
||||
1 1 1 2 3 3 2 data_46
|
||||
1 1 2 1 1 3 1 data_53
|
||||
1 1 2 1 2 2 1 data_59
|
||||
1 1 2 1 2 2 2 data_60
|
||||
0 1 2 1 2 3 1 data_61
|
||||
1 1 2 1 3 1 1 data_65
|
||||
1 1 2 1 3 1 2 data_66
|
||||
1 1 2 1 3 2 1 data_67
|
||||
1 1 2 1 3 2 2 data_68
|
||||
1 1 2 1 3 3 2 data_70
|
||||
0 1 2 1 3 4 1 data_71
|
||||
1 1 2 2 1 3 1 data_77
|
||||
0 1 2 2 1 4 2 data_80
|
||||
1 1 2 2 2 1 1 data_81
|
||||
1 1 2 2 2 2 1 data_83
|
||||
1 1 2 2 2 2 2 data_84
|
||||
1 1 2 2 3 1 1 data_89
|
||||
1 1 2 2 3 2 1 data_91
|
||||
1 1 2 2 3 2 2 data_92
|
||||
0 1 3 1 1 2 1 data_99
|
||||
0 1 3 1 1 4 1 data_103
|
||||
0 1 3 1 2 3 2 data_110
|
||||
0 1 3 1 2 4 1 data_111
|
||||
0 1 3 1 3 1 1 data_113
|
||||
0 1 3 1 3 3 1 data_117
|
||||
0 1 3 2 1 1 1 data_121
|
||||
0 1 3 2 1 1 2 data_122
|
||||
0 1 3 2 1 2 1 data_123
|
||||
0 1 3 2 1 4 2 data_128
|
||||
0 1 3 2 2 3 2 data_134
|
||||
0 1 3 2 2 4 2 data_136
|
||||
0 1 3 2 3 4 1 data_143
|
||||
1 2 1 1 1 1 1 data_145
|
||||
1 2 1 1 1 1 2 data_146
|
||||
0 2 1 1 1 4 1 data_151
|
||||
0 2 1 1 1 4 2 data_152
|
||||
1 2 1 1 2 1 1 data_153
|
||||
1 2 1 1 2 1 2 data_154
|
||||
1 2 1 1 3 2 2 data_164
|
||||
1 2 1 1 3 3 2 data_166
|
||||
0 2 1 1 3 4 1 data_167
|
||||
1 2 1 2 1 2 2 data_172
|
||||
0 2 1 2 2 4 1 data_183
|
||||
1 2 1 2 3 1 2 data_186
|
||||
1 2 2 1 1 3 2 data_198
|
||||
0 2 2 1 1 4 2 data_200
|
||||
1 2 2 1 2 1 2 data_202
|
||||
0 2 2 1 2 2 1 data_203
|
||||
1 2 2 1 3 1 1 data_209
|
||||
1 2 2 1 3 2 2 data_212
|
||||
0 2 2 1 3 3 1 data_213
|
||||
0 2 2 1 3 3 2 data_214
|
||||
0 2 2 1 3 4 2 data_216
|
||||
1 2 2 2 1 2 2 data_220
|
||||
1 2 2 2 2 1 2 data_226
|
||||
1 2 2 2 2 3 1 data_229
|
||||
1 2 2 2 2 3 2 data_230
|
||||
0 2 2 2 3 4 1 data_239
|
||||
1 2 3 1 1 3 1 data_245
|
||||
0 2 3 1 2 1 1 data_249
|
||||
0 2 3 1 2 2 1 data_251
|
||||
0 2 3 1 2 2 2 data_252
|
||||
0 2 3 1 2 3 2 data_254
|
||||
0 2 3 1 3 3 1 data_261
|
||||
0 2 3 2 1 1 2 data_266
|
||||
0 2 3 2 1 2 2 data_268
|
||||
0 2 3 2 1 4 1 data_271
|
||||
0 2 3 2 2 3 1 data_277
|
||||
0 2 3 2 2 4 2 data_280
|
||||
0 2 3 2 3 1 1 data_281
|
||||
0 2 3 2 3 2 1 data_283
|
||||
0 2 3 2 3 4 2 data_288
|
||||
1 3 1 1 1 1 1 data_289
|
||||
1 3 1 1 1 2 1 data_291
|
||||
1 3 1 1 1 3 1 data_293
|
||||
0 3 1 1 2 4 2 data_304
|
||||
1 3 1 1 3 1 2 data_306
|
||||
0 3 1 1 3 4 2 data_312
|
||||
1 3 1 2 1 2 1 data_315
|
||||
1 3 1 2 2 3 2 data_326
|
||||
0 3 1 2 2 4 2 data_328
|
||||
1 3 1 2 3 1 1 data_329
|
||||
1 3 2 1 1 2 2 data_340
|
||||
0 3 2 1 1 4 1 data_343
|
||||
1 3 2 1 2 3 1 data_349
|
||||
1 3 2 1 3 1 2 data_354
|
||||
1 3 2 2 1 2 2 data_364
|
||||
1 3 2 2 1 3 2 data_366
|
||||
1 3 2 2 2 1 2 data_370
|
||||
1 3 2 2 3 1 1 data_377
|
||||
1 3 2 2 3 3 2 data_382
|
||||
0 3 2 2 3 4 1 data_383
|
||||
1 3 3 1 1 3 2 data_390
|
||||
1 3 3 1 1 4 1 data_391
|
||||
0 3 3 1 2 4 2 data_400
|
||||
0 3 3 1 3 1 1 data_401
|
||||
0 3 3 1 3 2 1 data_403
|
||||
0 3 3 1 3 2 2 data_404
|
||||
0 3 3 1 3 4 1 data_407
|
||||
0 3 3 2 1 1 1 data_409
|
||||
0 3 3 2 1 1 2 data_410
|
||||
0 3 3 2 2 2 2 data_420
|
||||
0 3 3 2 2 3 2 data_422
|
||||
0 3 3 2 3 1 1 data_425
|
||||
0 3 3 2 3 3 2 data_430
|
||||
0 3 3 2 3 4 2 data_432
|
46
Code/entrainer_tester.py
Normal file
46
Code/entrainer_tester.py
Normal file
|
@ -0,0 +1,46 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*
|
||||
import numpy as np
|
||||
import sys
|
||||
import load_datasets as ld
|
||||
import BayesNaif # importer la classe du classifieur bayesien
|
||||
import Knn # importer la classe du Knn
|
||||
#importer d'autres fichiers et classes si vous en avez développés
|
||||
|
||||
|
||||
"""
|
||||
C'est le fichier main duquel nous allons tout lancer
|
||||
Vous allez dire en commentaire c'est quoi les paramètres que vous avez utilisés
|
||||
En gros, vous allez :
|
||||
1- Initialiser votre classifieur avec ses paramètres
|
||||
2- Charger les datasets
|
||||
3- Entrainer votre classifieur
|
||||
4- Le tester
|
||||
|
||||
"""
|
||||
|
||||
# Initializer vos paramètres
|
||||
|
||||
myKnn = Knn.Knn()
|
||||
|
||||
# Initializer/instanciez vos classifieurs avec leurs paramètres
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# Charger/lire les datasets
|
||||
|
||||
train, train_labels, test, test_labels = ld.load_iris_dataset(0.7)
|
||||
|
||||
# Entrainez votre classifieur
|
||||
|
||||
myKnn.train(train, train_labels)
|
||||
|
||||
# Tester votre classifieur
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
205
Code/load_datasets.py
Normal file
205
Code/load_datasets.py
Normal file
|
@ -0,0 +1,205 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*
|
||||
import numpy as np
|
||||
import random
|
||||
|
||||
def load_iris_dataset(train_ratio=0.7):
|
||||
"""Cette fonction a pour but de lire le dataset Iris
|
||||
|
||||
Args:
|
||||
train_ratio: le ratio des exemples (ou instances) qui vont etre attribués à l'entrainement,
|
||||
le rest des exemples va etre utilisé pour les tests.
|
||||
Par exemple : si le ratio est 50%, il y aura 50% des exemple (75 exemples) qui vont etre utilisé
|
||||
pour l'entrainement, et 50% (75 exemples) pour le test.
|
||||
|
||||
Retours:
|
||||
Cette fonction doit retourner 4 matrices de type Numpy, train, train_labels, test, et test_labels
|
||||
|
||||
- train : une matrice numpy qui contient les exemples qui vont etre utilisés pour l'entrainement, chaque
|
||||
ligne dans cette matrice représente un exemple (ou instance) d'entrainement.
|
||||
|
||||
- train_labels : contient les labels (ou les étiquettes) pour chaque exemple dans train, de telle sorte
|
||||
que : train_labels[i] est le label (ou l'etiquette) pour l'exemple train[i]
|
||||
|
||||
- test : une matrice numpy qui contient les exemples qui vont etre utilisés pour le test, chaque
|
||||
ligne dans cette matrice représente un exemple (ou instance) de test.
|
||||
|
||||
- test_labels : contient les labels (ou les étiquettes) pour chaque exemple dans test, de telle sorte
|
||||
que : test_labels[i] est le label (ou l'etiquette) pour l'exemple test[i]
|
||||
"""
|
||||
|
||||
random.seed(1) # Pour avoir les meme nombres aléatoires à chaque initialisation.
|
||||
|
||||
# Vous pouvez utiliser des valeurs numériques pour les différents types de classes, tel que :
|
||||
conversion_labels = {'Iris-setosa': 0, 'Iris-versicolor' : 1, 'Iris-virginica' : 2}
|
||||
|
||||
# Le fichier du dataset est dans le dossier datasets en attaché
|
||||
|
||||
f = open('datasets/bezdekIris.data', 'r')
|
||||
lines=[line.strip() for line in f.readlines()]
|
||||
f.close()
|
||||
|
||||
lines=[line.split(",") for line in lines if line]
|
||||
|
||||
features=[]
|
||||
labels=[]
|
||||
|
||||
for line in lines:
|
||||
features.append(line[0:4])
|
||||
labels.append(conversion_labels[line[4]])
|
||||
|
||||
np_features=np.array(features,dtype=np.float)
|
||||
np_labels=np.array(labels,dtype=np.int)
|
||||
|
||||
n_train = int(np_features.shape[0]*train_ratio)
|
||||
|
||||
all_indices = [i for i in range(np_features.shape[0])]
|
||||
random.shuffle(all_indices)
|
||||
|
||||
train_index = all_indices[0:n_train]
|
||||
test_index = all_indices[n_train:np_features.shape[0]]
|
||||
|
||||
train = np_features[train_index]
|
||||
train_labels = np_labels[train_index]
|
||||
test = np_features[test_index]
|
||||
test_labels = np_labels[test_index]
|
||||
|
||||
|
||||
# REMARQUE très importante :
|
||||
# remarquez bien comment les exemples sont ordonnés dans
|
||||
# le fichier du dataset, ils sont ordonnés par type de fleur, cela veut dire que
|
||||
# si vous lisez les exemples dans cet ordre et que si par exemple votre ration est de 60%,
|
||||
# vous n'allez avoir aucun exemple du type Iris-virginica pour l'entrainement, pensez
|
||||
# donc à utiliser la fonction random.shuffle pour melanger les exemples du dataset avant de séparer
|
||||
# en train et test.
|
||||
|
||||
|
||||
# Tres important : la fonction doit retourner 4 matrices (ou vecteurs) de type Numpy.
|
||||
return (train, train_labels, test, test_labels)
|
||||
|
||||
|
||||
|
||||
def load_congressional_dataset(train_ratio):
|
||||
"""Cette fonction a pour but de lire le dataset Congressional Voting Records
|
||||
|
||||
Args:
|
||||
train_ratio: le ratio des exemples (ou instances) qui vont servir pour l'entrainement,
|
||||
le rest des exemples va etre utilisé pour les test.
|
||||
|
||||
Retours:
|
||||
Cette fonction doit retourner 4 matrices de type Numpy, train, train_labels, test, et test_labels
|
||||
|
||||
- train : une matrice numpy qui contient les exemples qui vont etre utilisés pour l'entrainement, chaque
|
||||
ligne dans cette matrice représente un exemple (ou instance) d'entrainement.
|
||||
|
||||
- train_labels : contient les labels (ou les étiquettes) pour chaque exemple dans train, de telle sorte
|
||||
que : train_labels[i] est le label (ou l'etiquette) pour l'exemple train[i]
|
||||
|
||||
- test : une matrice numpy qui contient les exemples qui vont etre utilisés pour le test, chaque
|
||||
ligne dans cette matrice représente un exemple (ou instance) de test.
|
||||
|
||||
- test_labels : contient les labels (ou les étiquettes) pour chaque exemple dans test, de telle sorte
|
||||
que : test_labels[i] est le label (ou l'etiquette) pour l'exemple test[i]
|
||||
"""
|
||||
|
||||
random.seed(1) # Pour avoir les meme nombres aléatoires à chaque initialisation.
|
||||
|
||||
# Vous pouvez utiliser un dictionnaire pour convertir les attributs en numériques
|
||||
# Notez bien qu'on a traduit le symbole "?" pour une valeur numérique
|
||||
# Vous pouvez biensur utiliser d'autres valeurs pour ces attributs
|
||||
conversion_labels = {'republican' : 0, 'democrat' : 1,
|
||||
'n' : 0, 'y' : 1, '?' : 2}
|
||||
|
||||
# Le fichier du dataset est dans le dossier datasets en attaché
|
||||
f = open('datasets/house-votes-84.data', 'r')
|
||||
lines=[line.strip() for line in f.readlines()]
|
||||
f.close()
|
||||
|
||||
lines=[line.split(",") for line in lines if line]
|
||||
|
||||
features=[]
|
||||
labels=[]
|
||||
|
||||
for line in lines:
|
||||
features.append([conversion_labels[i] for i in line[1:17]])
|
||||
labels.append(conversion_labels[line[0]])
|
||||
|
||||
np_features=np.array(features,dtype=np.float)
|
||||
np_labels=np.array(labels,dtype=np.int)
|
||||
|
||||
train_index = np.random.rand(np_features.shape[0]) < train_ratio
|
||||
|
||||
train = np_features[train_index]
|
||||
train_labels = np_labels[train_index]
|
||||
test = np_features[~train_index]
|
||||
test_labels = np_labels[~train_index]
|
||||
|
||||
# La fonction doit retourner 4 structures de données de type Numpy.
|
||||
return (train, train_labels, test, test_labels)
|
||||
|
||||
|
||||
def load_monks_dataset(numero_dataset):
|
||||
"""Cette fonction a pour but de lire le dataset Monks
|
||||
|
||||
Notez bien que ce dataset est différent des autres d'un point de vue
|
||||
exemples entrainement et exemples de tests.
|
||||
Pour ce dataset, nous avons 3 différents sous problèmes, et pour chacun
|
||||
nous disposons d'un fichier contenant les exemples d'entrainement et
|
||||
d'un fichier contenant les fichiers de tests. Donc nous avons besoin
|
||||
seulement du numéro du sous problème pour charger le dataset.
|
||||
|
||||
Args:
|
||||
numero_dataset: lequel des sous problèmes nous voulons charger (1, 2 ou 3 ?)
|
||||
par exemple, si numero_dataset=2, vous devez lire :
|
||||
le fichier monks-2.train contenant les exemples pour l'entrainement
|
||||
et le fichier monks-2.test contenant les exemples pour le test
|
||||
les fichiers sont tous dans le dossier datasets
|
||||
Retours:
|
||||
Cette fonction doit retourner 4 matrices de type Numpy, train, train_labels, test, et test_labels
|
||||
|
||||
- train : une matrice numpy qui contient les exemples qui vont etre utilisés pour l'entrainement, chaque
|
||||
ligne dans cette matrice représente un exemple (ou instance) d'entrainement.
|
||||
- train_labels : contient les labels (ou les étiquettes) pour chaque exemple dans train, de telle sorte
|
||||
que : train_labels[i] est le label (ou l'etiquette) pour l'exemple train[i]
|
||||
|
||||
- test : une matrice numpy qui contient les exemples qui vont etre utilisés pour le test, chaque
|
||||
ligne dans cette matrice représente un exemple (ou instance) de test.
|
||||
- test_labels : contient les labels (ou les étiquettes) pour chaque exemple dans test, de telle sorte
|
||||
que : test_labels[i] est le label (ou l'etiquette) pour l'exemple test[i]
|
||||
"""
|
||||
|
||||
|
||||
# TODO : votre code ici, vous devez lire les fichiers .train et .test selon l'argument numero_dataset
|
||||
|
||||
f = open('datasets/monks-'+str(numero_dataset)+'.train', 'r')
|
||||
lines_train=[line.strip() for line in f.readlines()]
|
||||
f.close()
|
||||
|
||||
f = open('datasets/monks-'+str(numero_dataset)+'.test', 'r')
|
||||
lines_test=[line.strip() for line in f.readlines()]
|
||||
f.close()
|
||||
|
||||
lines_train=[line.split(" ") for line in lines_train if line]
|
||||
lines_test=[line.split(" ") for line in lines_test if line]
|
||||
|
||||
features_train=[]
|
||||
labels_train=[]
|
||||
features_test=[]
|
||||
labels_test=[]
|
||||
|
||||
for line in lines_train:
|
||||
features_train.append(line[1:7])
|
||||
labels_train.append(line[0])
|
||||
|
||||
for line in lines_test:
|
||||
features_test.append(line[1:7])
|
||||
labels_test.append(line[0])
|
||||
|
||||
train=np.array(features_train,dtype=np.float)
|
||||
train_labels=np.array(labels_train,dtype=np.int)
|
||||
|
||||
test=np.array(features_test,dtype=np.float)
|
||||
test_labels=np.array(labels_test,dtype=np.int)
|
||||
|
||||
# La fonction doit retourner 4 matrices (ou vecteurs) de type Numpy.
|
||||
return (train, train_labels, test, test_labels)
|
Loading…
Add table
Reference in a new issue