# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt import sys import load_datasets import NeuralNet # importer la classe du Réseau de Neurones import DecisionTree # importer la classe de l'Arbre de Décision # importer d'autres fichiers et classes si vous en avez développés # importer d'autres bibliothèques au besoin, sauf celles qui font du machine learning train1, train_labels1, test1, test_labels1 = ld.load_iris_dataset(train_ratio = 0.7) train2, train_labels2, test2, test_labels2 = ld.load_monks_dataset(1) train3, train_labels3, test3, test_labels3 = ld.load_monks_dataset(2) train4, train_labels4, test4, test_labels4 = ld.load_monks_dataset(3) train5, train_labels5, test5, test_labels5 = ld.load_congressional_dataset(train_ratio = 0.7) dt1 = DecisionTree.DecisionTree(attribute_type="continuous") dt1.train(train1, train_labels1) dt1.predict(test1[0],test_labels1[0]) dt1.test(test1, test_labels1) dt2 = DecisionTree.DecisionTree(attribute_type="discrete") dt2.train(train2, train_labels2) dt2.tree dt2.predict(test2[0],test_labels2[0]) dt2.test(test2, test_labels2) dt3 = DecisionTree.DecisionTree(attribute_type="discrete") dt3.train(train3, train_labels3) dt3.tree dt3.predict(test3[0],test_labels3[0]) dt3.test(test3, test_labels3) dt4 = DecisionTree.DecisionTree(attribute_type="discrete") dt4.train(train4, train_labels4) dt4.tree dt4.predict(test4[0],test_labels4[0]) dt4.test(test4, test_labels4) dt5 = DecisionTree.DecisionTree(attribute_type="discrete") dt5.train(train5, train_labels5) dt5.predict(test5[0],test_labels5[0]) dt5.test(test5, test_labels5) nn1 = NeuralNet.NeuralNet(np.array([4,4,4,1])) nn1.feed_forward(train1[0]) nn1.train(train1, train_labels1, 0.1)