384 lines
13 KiB
Python
384 lines
13 KiB
Python
# crawler.py
|
|
# ----------
|
|
# Licensing Information: You are free to use or extend these projects for
|
|
# educational purposes provided that (1) you do not distribute or publish
|
|
# solutions, (2) you retain this notice, and (3) you provide clear
|
|
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
|
#
|
|
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
|
# The core projects and autograders were primarily created by John DeNero
|
|
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
|
# Student side autograding was added by Brad Miller, Nick Hay, and
|
|
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
|
|
|
|
|
#!/usr/bin/python
|
|
import math
|
|
from math import pi as PI
|
|
import time
|
|
import environment
|
|
import random
|
|
|
|
class CrawlingRobotEnvironment(environment.Environment):
|
|
|
|
def __init__(self, crawlingRobot):
|
|
|
|
self.crawlingRobot = crawlingRobot
|
|
|
|
# The state is of the form (armAngle, handAngle)
|
|
# where the angles are bucket numbers, not actual
|
|
# degree measurements
|
|
self.state = None
|
|
|
|
self.nArmStates = 9
|
|
self.nHandStates = 13
|
|
|
|
# create a list of arm buckets and hand buckets to
|
|
# discretize the state space
|
|
minArmAngle,maxArmAngle = self.crawlingRobot.getMinAndMaxArmAngles()
|
|
minHandAngle,maxHandAngle = self.crawlingRobot.getMinAndMaxHandAngles()
|
|
armIncrement = (maxArmAngle - minArmAngle) / (self.nArmStates-1)
|
|
handIncrement = (maxHandAngle - minHandAngle) / (self.nHandStates-1)
|
|
self.armBuckets = [minArmAngle+(armIncrement*i) \
|
|
for i in range(self.nArmStates)]
|
|
self.handBuckets = [minHandAngle+(handIncrement*i) \
|
|
for i in range(self.nHandStates)]
|
|
|
|
# Reset
|
|
self.reset()
|
|
|
|
def getCurrentState(self):
|
|
"""
|
|
Return the current state
|
|
of the crawling robot
|
|
"""
|
|
return self.state
|
|
|
|
def getPossibleActions(self, state):
|
|
"""
|
|
Returns possible actions
|
|
for the states in the
|
|
current state
|
|
"""
|
|
|
|
actions = list()
|
|
|
|
currArmBucket,currHandBucket = state
|
|
if currArmBucket > 0: actions.append('arm-down')
|
|
if currArmBucket < self.nArmStates-1: actions.append('arm-up')
|
|
if currHandBucket > 0: actions.append('hand-down')
|
|
if currHandBucket < self.nHandStates-1: actions.append('hand-up')
|
|
|
|
return actions
|
|
|
|
def doAction(self, action):
|
|
"""
|
|
Perform the action and update
|
|
the current state of the Environment
|
|
and return the reward for the
|
|
current state, the next state
|
|
and the taken action.
|
|
|
|
Returns:
|
|
nextState, reward
|
|
"""
|
|
nextState, reward = None, None
|
|
|
|
oldX,oldY = self.crawlingRobot.getRobotPosition()
|
|
|
|
armBucket,handBucket = self.state
|
|
armAngle,handAngle = self.crawlingRobot.getAngles()
|
|
if action == 'arm-up':
|
|
newArmAngle = self.armBuckets[armBucket+1]
|
|
self.crawlingRobot.moveArm(newArmAngle)
|
|
nextState = (armBucket+1,handBucket)
|
|
if action == 'arm-down':
|
|
newArmAngle = self.armBuckets[armBucket-1]
|
|
self.crawlingRobot.moveArm(newArmAngle)
|
|
nextState = (armBucket-1,handBucket)
|
|
if action == 'hand-up':
|
|
newHandAngle = self.handBuckets[handBucket+1]
|
|
self.crawlingRobot.moveHand(newHandAngle)
|
|
nextState = (armBucket,handBucket+1)
|
|
if action == 'hand-down':
|
|
newHandAngle = self.handBuckets[handBucket-1]
|
|
self.crawlingRobot.moveHand(newHandAngle)
|
|
nextState = (armBucket,handBucket-1)
|
|
|
|
newX,newY = self.crawlingRobot.getRobotPosition()
|
|
|
|
# a simple reward function
|
|
reward = newX - oldX
|
|
|
|
self.state = nextState
|
|
return nextState, reward
|
|
|
|
|
|
def reset(self):
|
|
"""
|
|
Resets the Environment to the initial state
|
|
"""
|
|
## Initialize the state to be the middle
|
|
## value for each parameter e.g. if there are 13 and 19
|
|
## buckets for the arm and hand parameters, then the intial
|
|
## state should be (6,9)
|
|
##
|
|
## Also call self.crawlingRobot.setAngles()
|
|
## to the initial arm and hand angle
|
|
|
|
armState = self.nArmStates/2
|
|
handState = self.nHandStates/2
|
|
self.state = armState,handState
|
|
self.crawlingRobot.setAngles(self.armBuckets[armState],self.handBuckets[handState])
|
|
self.crawlingRobot.positions = [20,self.crawlingRobot.getRobotPosition()[0]]
|
|
|
|
|
|
class CrawlingRobot:
|
|
|
|
def setAngles(self, armAngle, handAngle):
|
|
"""
|
|
set the robot's arm and hand angles
|
|
to the passed in values
|
|
"""
|
|
self.armAngle = armAngle
|
|
self.handAngle = handAngle
|
|
|
|
def getAngles(self):
|
|
"""
|
|
returns the pair of (armAngle, handAngle)
|
|
"""
|
|
return self.armAngle, self.handAngle
|
|
|
|
def getRobotPosition(self):
|
|
"""
|
|
returns the (x,y) coordinates
|
|
of the lower-left point of the
|
|
robot
|
|
"""
|
|
return self.robotPos
|
|
|
|
def moveArm(self, newArmAngle):
|
|
"""
|
|
move the robot arm to 'newArmAngle'
|
|
"""
|
|
oldArmAngle = self.armAngle
|
|
if newArmAngle > self.maxArmAngle:
|
|
raise 'Crawling Robot: Arm Raised too high. Careful!'
|
|
if newArmAngle < self.minArmAngle:
|
|
raise 'Crawling Robot: Arm Raised too low. Careful!'
|
|
disp = self.displacement(self.armAngle, self.handAngle,
|
|
newArmAngle, self.handAngle)
|
|
curXPos = self.robotPos[0]
|
|
self.robotPos = (curXPos+disp, self.robotPos[1])
|
|
self.armAngle = newArmAngle
|
|
|
|
# Position and Velocity Sign Post
|
|
self.positions.append(self.getRobotPosition()[0])
|
|
# self.angleSums.append(abs(math.degrees(oldArmAngle)-math.degrees(newArmAngle)))
|
|
if len(self.positions) > 100:
|
|
self.positions.pop(0)
|
|
# self.angleSums.pop(0)
|
|
|
|
def moveHand(self, newHandAngle):
|
|
"""
|
|
move the robot hand to 'newArmAngle'
|
|
"""
|
|
oldHandAngle = self.handAngle
|
|
|
|
if newHandAngle > self.maxHandAngle:
|
|
raise 'Crawling Robot: Hand Raised too high. Careful!'
|
|
if newHandAngle < self.minHandAngle:
|
|
raise 'Crawling Robot: Hand Raised too low. Careful!'
|
|
disp = self.displacement(self.armAngle, self.handAngle, self.armAngle, newHandAngle)
|
|
curXPos = self.robotPos[0]
|
|
self.robotPos = (curXPos+disp, self.robotPos[1])
|
|
self.handAngle = newHandAngle
|
|
|
|
# Position and Velocity Sign Post
|
|
self.positions.append(self.getRobotPosition()[0])
|
|
# self.angleSums.append(abs(math.degrees(oldHandAngle)-math.degrees(newHandAngle)))
|
|
if len(self.positions) > 100:
|
|
self.positions.pop(0)
|
|
# self.angleSums.pop(0)
|
|
|
|
def getMinAndMaxArmAngles(self):
|
|
"""
|
|
get the lower- and upper- bound
|
|
for the arm angles returns (min,max) pair
|
|
"""
|
|
return self.minArmAngle, self.maxArmAngle
|
|
|
|
def getMinAndMaxHandAngles(self):
|
|
"""
|
|
get the lower- and upper- bound
|
|
for the hand angles returns (min,max) pair
|
|
"""
|
|
return self.minHandAngle, self.maxHandAngle
|
|
|
|
def getRotationAngle(self):
|
|
"""
|
|
get the current angle the
|
|
robot body is rotated off the ground
|
|
"""
|
|
armCos, armSin = self.__getCosAndSin(self.armAngle)
|
|
handCos, handSin = self.__getCosAndSin(self.handAngle)
|
|
x = self.armLength * armCos + self.handLength * handCos + self.robotWidth
|
|
y = self.armLength * armSin + self.handLength * handSin + self.robotHeight
|
|
if y < 0:
|
|
return math.atan(-y/x)
|
|
return 0.0
|
|
|
|
|
|
## You shouldn't need methods below here
|
|
|
|
|
|
def __getCosAndSin(self, angle):
|
|
return math.cos(angle), math.sin(angle)
|
|
|
|
def displacement(self, oldArmDegree, oldHandDegree, armDegree, handDegree):
|
|
|
|
oldArmCos, oldArmSin = self.__getCosAndSin(oldArmDegree)
|
|
armCos, armSin = self.__getCosAndSin(armDegree)
|
|
oldHandCos, oldHandSin = self.__getCosAndSin(oldHandDegree)
|
|
handCos, handSin = self.__getCosAndSin(handDegree)
|
|
|
|
xOld = self.armLength * oldArmCos + self.handLength * oldHandCos + self.robotWidth
|
|
yOld = self.armLength * oldArmSin + self.handLength * oldHandSin + self.robotHeight
|
|
|
|
x = self.armLength * armCos + self.handLength * handCos + self.robotWidth
|
|
y = self.armLength * armSin + self.handLength * handSin + self.robotHeight
|
|
|
|
if y < 0:
|
|
if yOld <= 0:
|
|
return math.sqrt(xOld*xOld + yOld*yOld) - math.sqrt(x*x + y*y)
|
|
return (xOld - yOld*(x-xOld) / (y - yOld)) - math.sqrt(x*x + y*y)
|
|
else:
|
|
if yOld >= 0:
|
|
return 0.0
|
|
return -(x - y * (xOld-x)/(yOld-y)) + math.sqrt(xOld*xOld + yOld*yOld)
|
|
|
|
raise 'Never Should See This!'
|
|
|
|
def draw(self, stepCount, stepDelay):
|
|
x1, y1 = self.getRobotPosition()
|
|
x1 = x1 % self.totWidth
|
|
|
|
## Check Lower Still on the ground
|
|
if y1 != self.groundY:
|
|
raise 'Flying Robot!!'
|
|
|
|
rotationAngle = self.getRotationAngle()
|
|
cosRot, sinRot = self.__getCosAndSin(rotationAngle)
|
|
|
|
x2 = x1 + self.robotWidth * cosRot
|
|
y2 = y1 - self.robotWidth * sinRot
|
|
|
|
x3 = x1 - self.robotHeight * sinRot
|
|
y3 = y1 - self.robotHeight * cosRot
|
|
|
|
x4 = x3 + cosRot*self.robotWidth
|
|
y4 = y3 - sinRot*self.robotWidth
|
|
|
|
self.canvas.coords(self.robotBody,x1,y1,x2,y2,x4,y4,x3,y3)
|
|
|
|
armCos, armSin = self.__getCosAndSin(rotationAngle+self.armAngle)
|
|
xArm = x4 + self.armLength * armCos
|
|
yArm = y4 - self.armLength * armSin
|
|
|
|
self.canvas.coords(self.robotArm,x4,y4,xArm,yArm)
|
|
|
|
handCos, handSin = self.__getCosAndSin(self.handAngle+rotationAngle)
|
|
xHand = xArm + self.handLength * handCos
|
|
yHand = yArm - self.handLength * handSin
|
|
|
|
self.canvas.coords(self.robotHand,xArm,yArm,xHand,yHand)
|
|
|
|
|
|
# Position and Velocity Sign Post
|
|
# time = len(self.positions) + 0.5 * sum(self.angleSums)
|
|
# velocity = (self.positions[-1]-self.positions[0]) / time
|
|
# if len(self.positions) == 1: return
|
|
steps = (stepCount - self.lastStep)
|
|
if steps==0:return
|
|
# pos = self.positions[-1]
|
|
# velocity = (pos - self.lastPos) / steps
|
|
# g = .9 ** (10 * stepDelay)
|
|
# g = .99 ** steps
|
|
# self.velAvg = g * self.velAvg + (1 - g) * velocity
|
|
# g = .999 ** steps
|
|
# self.velAvg2 = g * self.velAvg2 + (1 - g) * velocity
|
|
pos = self.positions[-1]
|
|
velocity = pos - self.positions[-2]
|
|
vel2 = (pos - self.positions[0]) / len(self.positions)
|
|
self.velAvg = .9 * self.velAvg + .1 * vel2
|
|
velMsg = '100-step Avg Velocity: %.2f' % self.velAvg
|
|
# velMsg2 = '1000-step Avg Velocity: %.2f' % self.velAvg2
|
|
velocityMsg = 'Velocity: %.2f' % velocity
|
|
positionMsg = 'Position: %2.f' % pos
|
|
stepMsg = 'Step: %d' % stepCount
|
|
if 'vel_msg' in dir(self):
|
|
self.canvas.delete(self.vel_msg)
|
|
self.canvas.delete(self.pos_msg)
|
|
self.canvas.delete(self.step_msg)
|
|
self.canvas.delete(self.velavg_msg)
|
|
# self.canvas.delete(self.velavg2_msg)
|
|
# self.velavg2_msg = self.canvas.create_text(850,190,text=velMsg2)
|
|
self.velavg_msg = self.canvas.create_text(650,190,text=velMsg)
|
|
self.vel_msg = self.canvas.create_text(450,190,text=velocityMsg)
|
|
self.pos_msg = self.canvas.create_text(250,190,text=positionMsg)
|
|
self.step_msg = self.canvas.create_text(50,190,text=stepMsg)
|
|
# self.lastPos = pos
|
|
self.lastStep = stepCount
|
|
# self.lastVel = velocity
|
|
|
|
def __init__(self, canvas):
|
|
|
|
## Canvas ##
|
|
self.canvas = canvas
|
|
self.velAvg = 0
|
|
# self.velAvg2 = 0
|
|
# self.lastPos = 0
|
|
self.lastStep = 0
|
|
# self.lastVel = 0
|
|
|
|
## Arm and Hand Degrees ##
|
|
self.armAngle = self.oldArmDegree = 0.0
|
|
self.handAngle = self.oldHandDegree = -PI/6
|
|
|
|
self.maxArmAngle = PI/6
|
|
self.minArmAngle = -PI/6
|
|
|
|
self.maxHandAngle = 0
|
|
self.minHandAngle = -(5.0/6.0) * PI
|
|
|
|
## Draw Ground ##
|
|
self.totWidth = canvas.winfo_reqwidth()
|
|
self.totHeight = canvas.winfo_reqheight()
|
|
self.groundHeight = 40
|
|
self.groundY = self.totHeight - self.groundHeight
|
|
|
|
self.ground = canvas.create_rectangle(0,
|
|
self.groundY,self.totWidth,self.totHeight, fill='blue')
|
|
|
|
## Robot Body ##
|
|
self.robotWidth = 80
|
|
self.robotHeight = 40
|
|
self.robotPos = (20, self.groundY)
|
|
self.robotBody = canvas.create_polygon(0,0,0,0,0,0,0,0, fill='green')
|
|
|
|
## Robot Arm ##
|
|
self.armLength = 60
|
|
self.robotArm = canvas.create_line(0,0,0,0,fill='orange',width=5)
|
|
|
|
## Robot Hand ##
|
|
self.handLength = 40
|
|
self.robotHand = canvas.create_line(0,0,0,0,fill='red',width=3)
|
|
|
|
self.positions = [0,0]
|
|
# self.angleSums = [0,0]
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
from graphicsCrawlerDisplay import *
|
|
run()
|