modeles terminés, pas testés
This commit is contained in:
parent
b9c99e321e
commit
196b0d9649
2 changed files with 40 additions and 7 deletions
|
@ -13,9 +13,6 @@ from scipy.sparse import csr_matrix, hstack
|
|||
# nltk.download('sentiwordnet')
|
||||
|
||||
|
||||
# from sklearn.naive_bayes import MultinomialNB
|
||||
# from sklearn.linear_model import LogisticRegression
|
||||
|
||||
train_pos_reviews_fn = "./data/train-positive-t1.txt"
|
||||
train_neg_reviews_fn = "./data/train-negative-t1.txt"
|
||||
test_pos_reviews_fn = "./data/test-pos-t1.txt"
|
||||
|
@ -160,3 +157,33 @@ if __name__ == '__main__':
|
|||
v_final_test.append(v_select_final_test)
|
||||
|
||||
# Scoring des modèles
|
||||
|
||||
modeles_nb = []
|
||||
scores_nb = []
|
||||
modeles_reg = []
|
||||
scores_reg = []
|
||||
for norm_method in range(0,2):
|
||||
modeles_select_vector_nb = []
|
||||
scores_select_vector_nb = []
|
||||
modeles_select_vector_reg = []
|
||||
scores_select_vector_reg = []
|
||||
for select_method in range(0,3):
|
||||
modeles_vector_nb = []
|
||||
scores_vector_nb = []
|
||||
modeles_vector_reg = []
|
||||
scores_vector_reg = []
|
||||
for vector_method in range(0,3):
|
||||
modele_nb = sfun.train_naive_model(v_final_train[norm_method][select_method][vector_method],train_dataset_response)
|
||||
score_nb = modele_nb.predict(v_final_test[norm_method][select_method][vector_method])
|
||||
modele_reg = sfun.train_regression_model(v_final_train[norm_method][select_method][vector_method],train_dataset_response)
|
||||
score_reg = modele_reg.predict(v_final_test[norm_method][select_method][vector_method])
|
||||
modeles_vector_reg.append(modele_reg)
|
||||
scores_vector_reg.append(score_reg)
|
||||
modeles_select_vector_nb.append(modeles_vector_nb)
|
||||
scores_select_vector_nb.append(scores_vector_nb)
|
||||
modeles_select_vector_reg.append(modeles_vector_reg)
|
||||
scores_select_vector_reg.append(scores_vector_reg)
|
||||
modeles_nb.append(modeles_select_vector_nb)
|
||||
scores_nb.append(scores_select_vector_nb)
|
||||
modeles_reg.append(modeles_select_vector_reg)
|
||||
scores_reg.append(scores_select_vector_reg)
|
|
@ -13,6 +13,8 @@ from collections import defaultdict
|
|||
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
|
||||
from nltk.corpus import wordnet as wn
|
||||
from nltk.corpus import sentiwordnet as swn
|
||||
from sklearn.naive_bayes import MultinomialNB
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
|
||||
# Normalisation
|
||||
|
||||
|
@ -182,9 +184,13 @@ def attribute_polarity_count(norm_reviews):
|
|||
|
||||
# Training
|
||||
|
||||
def train_naive_model(reviews):
|
||||
return 0
|
||||
def train_naive_model(reviews_vectors,reviews_response):
|
||||
mnb = MultinomialNB()
|
||||
mnb.fit(reviews_vectors,reviews_response)
|
||||
return mnb
|
||||
|
||||
|
||||
def train_regression_model(reviews):
|
||||
return 0
|
||||
def train_regression_model(reviews_vectors,reviews_response):
|
||||
lrm = LogisticRegression(solver='liblinear', max_iter=1000)
|
||||
lrm.fit(reviews_vectors,reviews_response)
|
||||
return lrm
|
||||
|
|
Loading…
Reference in a new issue