{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import parsing_functions as pf\n",
    "import re\n",
    "import pandas as pd\n",
    "import time"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "listOfFiles = pf.getListOfFiles(\"data\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "commentaires = []\n",
    "\n",
    "for xlpath in listOfFiles:\n",
    "    comments_df = []\n",
    "    media, post_id = re.match(r\"data/([A-Z]+)/comments([0-9a-z\\-]+)\\.xlsx\",xlpath).groups()\n",
    "    comments_df = pf.get_comments(xlpath)\n",
    "    comments_df['media']=media\n",
    "    comments_df['post_id']=post_id\n",
    "    commentaires.append(comments_df)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "commentaires_df = pd.concat(commentaires, ignore_index=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "commentaires_df.to_csv(\"refined_data/commentaires_df.csv\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}