--- title: "Analyse BD" author: "François Pelletier" date: "07/10/2019" output: html_document --- ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE) ``` ```{r} library("sentometrics") library("tidyverse") library("plotly") ``` ```{r} core_features_corpus.RDS <- readRDS("core_features_corpus.RDS") top_10_country <- readRDS("top_10_country.RDS") top_10_sites <- readRDS("top_10_sites.RDS") corpusSample <- quanteda::corpus_sample(core_features_corpus.RDS, size = 200) ``` # Définition des lexiques ```{r} data("list_valence_shifters", package = "sentometrics") data("list_lexicons", package = "sentometrics") lexIn <- list_lexicons[c("FEEL_en_tr")] valIn <- list_valence_shifters[["en"]] l1 <- sento_lexicons(lexIn,valIn) ``` # Calcul des sentiments ```{r} c_sentiments_sample <- compute_sentiment(x = corpusSample, lexicons = l1, how = "counts", nCore = 8) c_sentiments_sample ``` ```{r} c_control_compute <- ctr_agg(howWithin = "proportional", howDocs = "equal_weight", howTime = "equal_weight", lag = 7, by = "day") c_sentiments <- sento_measures(sento_corpus = core_features_corpus.RDS, lexicons = l1, ctr = c_control_compute) ``` ```{r} c_measures <- as.data.table(c_sentiments) ``` ```{r} c_measures_g <- measures_global(c_sentiments) ``` # Sentiment par site ```{r} c_measures_melt <- c_measures %>% select(date,starts_with("FEEL_en_tr--site")) %>% `colnames<-`(c("date",top_10_sites$site)) %>% melt(id="date",variable.name = "site") plot_site <- ggplot(data=c_measures_melt, aes(x=date, y=value, colour=site))+ geom_line() ggplotly(plot_site) ``` # Sentiment par pays ```{r} c_measures_melt <- c_measures %>% select(date,starts_with("FEEL_en_tr--country")) %>% `colnames<-`(c("date",top_10_country$country)) %>% melt(id="date",variable.name = "country") plot_country <- ggplot(data=c_measures_melt, aes(x=date, y=value, colour=country))+ geom_line() ggplotly(plot_country) ``` # Sentiment par compteur d'entités ```{r} c_measures_melt <- c_measures %>% select(date,starts_with("FEEL_en_tr--entity")) %>% melt(id="date",variable.name = "entity") plot_entity <- ggplot(data=c_measures_melt, aes(x=date, y=value, colour=entity))+ geom_line() ggplotly(plot_entity) ```