systeme-retro-contenu/backend/main.py
François Pelletier 0fffbcfba4 🌟 Initial project setup with backend (FastAPI), frontend (Streamlit), Milvus, and Flowise in Docker 🧱📦
* Added backend infrastructure (FastAPI, Dockerfile, requirements)
* Set up frontend (Streamlit, Dockerfile, requirements)
* Configured docker-compose with Milvus and Flowise services
* Created project structure with .env.template and .dockerignore
* Added initial gitignore and project metadata
2025-05-11 05:23:24 -04:00

67 lines
2.1 KiB
Python

from fastapi import FastAPI, APIRouter, HTTPException
import uuid
app = FastAPI(title="Retro API", description="Retro content management system")
# Routers
import_router = APIRouter(prefix="/import", tags=["Import"])
analyse_router = APIRouter(prefix="/analyse", tags=["Analyse"])
export_router = APIRouter(prefix="/export", tags=["Export"])
generate_router = APIRouter(prefix="/generate", tags=["Generate"])
# Sample data storage (replace with Milvus/DB integration)
data_store = {}
# Import Router
@import_router.post("/data")
def import_data(data: dict):
"""
Import data (e.g., text, files, or structured data).
"""
data_id = str(uuid.uuid4())
data_store[data_id] = data
return {"message": "Data imported successfully", "data_id": data_id}
# Analyse Router
@analyse_router.get("/{data_id}")
def analyse_data(data_id: str):
"""
Analyse imported data (e.g., sentiment, keywords, or patterns).
"""
if data_id not in data_store:
raise HTTPException(status_code=404, detail="Data not found")
# Placeholder for analysis logic
return {
"data_id": data_id,
"analysis": {"word_count": len(data_store[data_id].get("text", ""))},
}
# Export Router
@export_router.get("/{data_id}")
def export_data(data_id: str):
"""
Export analysed data (e.g., as JSON, CSV, or PDF).
"""
if data_id not in data_store:
raise HTTPException(status_code=404, detail="Data not found")
return {
"data_id": data_id,
"content": data_store[data_id],
"status": "exported",
}
# Generate Router
@generate_router.post("/content")
def generate_content(prompt: str):
"""
Generate new content (e.g., text, images, or summaries).
"""
# Placeholder for generation logic (e.g., LLM, AI model)
generated = {"response": f"Generated content based on: {prompt}"}
return {"message": "Content generated", "data": generated}
# Include routers in the main app
app.include_router(import_router)
app.include_router(analyse_router)
app.include_router(export_router)
app.include_router(generate_router)