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A B S T R A C T

Retailers must frequently deal with alterations in planned customer service levels due to unexpected demand
variations or unscheduled employee absences. Although personnel scheduling techniques have been extensively
studied and successfully applied, previous treatments of scheduling adjustments in response to demand and
employee contingencies have not systematically considered all of the relevant issues. After presenting a math-
ematical specification of the problem, this study develops various algorithms that search for the best adjustments
among all available contingency recovery resources, including transfers of multiskilled employees between
different store areas. The proposed formulations also permit interaction between the user/decision maker and
the affected employees. The underlying objective is to maximize profits, favoring solutions with fewer schedule
modifications in order to minimize worker dissatisfaction. Due to the complexity of the basic model, the problem
is divided and simplified using two greedy heuristics. Both algorithms can be implemented with real-world size
problems and reach good solutions within minutes. Multiskilled employees prove to be an important reserve
capacity for recovery of service levels in the face of unexpected variations. Empirical results using real data from
a Chilean chain retailer show that in the worst scenario, the proposed model's schedule adjustments reduced lost
profits due to unexpected variations by 18%.

1. Introduction

The retail trade is highly labor-intensive as well as extremely
competitive (Nissen & Günther, 2010). Businesses in the rapidly
growing industry face both predictable phenomena such as demand
seasonality and unpredictable ones like demand uncertainty and un-
scheduled personnel absences. Unlike other sectors of the economy
where demand is regular and predictable, retailers must deal with de-
mand volumes that may vary dramatically over the course of a single
day or the days of the week (Cuevas, Ferrer, Klapp, &Muñoz, 2016). In
this scenario, and given the often complex labor law restrictions on
working hours in the industry, planning shift schedules to efficiently
meet the requirements of customer demand is no easy task. The goal of
retail firms is to minimize labor costs while maintaining the best pos-
sible customer service levels, but even those with sophisticated work-
force planning systems may find themselves confronted at different
moments of the week with overstaffing or understaffing problems
(Henao, Muñoz, & Ferrer, 2015). Overstaffing in this context refers to
periods when there is an excess of employees on duty (and often idle)
for a given desired level of customer service while understaffing

denotes periods when employee requirements exceeds on-duty per-
sonnel. In latter case, the staffing imbalance can be propagated across
successive periods. Thus, poor management of these issues may result in
significant sales revenue losses, deterioration in customer service and a
negative impact on a firm's business reputation (Kabak, Ülengin, Aktas,
Önsel, & Topcu, 2008).

Personnel scheduling is traditionally a static process in that the
scheduling decisions are all made at the start of the planning horizon,
the assumption being that they cannot be adapted dynamically to ad-
dress the stochasticity inherent in supply and demand. The process of
planning a given day, week or month usually begins several weeks
beforehand on the basis of demand forecasts. In some cases, it is exe-
cuted by sophisticated shift-assignment systems that optimally allocate
available personnel according to demand requirements. However, in
the days and weeks following definition of the assignments, decision-
makers will inevitably be confronted with a series of new and un-
predictable events that force them to make adjustments.

In Bard and Wan (2005), the authors suggest a hierarchical three-
phase approach to schedule adjustment. In the first phase, employees
are assigned to daily shift and days-off patterns over a short-term
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planning horizon, typically a single week. In the second phase, new
information is added to the weekly scheduling process on predictable
events such as scheduled personnel absences (e.g., medical leave,
holidays, resignations) and expected average demand increases (e.g.,
sales promotions, introduction of new products). The third phase, and
the one that will concern us here, concerns the real-time adjustments
(i.e., day to day) in personnel scheduling in response to the occurrence
of events more difficult to predict.

Contingencies arising at the last minute that affect the quality of
employee workforce planning may originate in demand and/or
staffing level factors. In the case of demand, variations may occur due
to internal events such as marketing campaigns, unanticipated public
events or other eventualities such as the weather. As regards staffing,
levels may be altered if an employee for any reason cannot work the
assigned hours or because of new recovery resources that were not
included in the plan. An example of a recovery resource is overtime. In
either case, to ensure a day's shift scheduling requirements are met in
the face of an unexpected occurrence, recovery resources must be
applied once demand and actual personnel availability are known so
that the contingency can be mitigated at minimum cost. The recovery
resources most widely used by service industry companies are the
following:

(1) Overtime: Involves extending an employee's shift for the day, either
by moving up a shift's start time or moving back its end time. This is
the most common recovery resource given that it is simple to im-
plement, always available and can be assigned as soon as a staffing
deficit appears. On the other hand, overtime is associated with
lower productivity, increased stress and other potentially negative
consequences of extended shifts.

(2) Employee call-in: Refers to employees contracted for a certain
minimum guaranteed number of weekly hours but who can be
called in for additional shifts. As well as the hourly remuneration,
they receive standby pay for being on call during specified hours.
The additional shifts must be of a certain minimum length and are
subject to a predefined advance notice requirement.

(3) Temporary employees: These are employees supplied by an external
firm, thus ensuring a certain level of availability. The pros and cons
of such an arrangement depend in large measure on the terms of the
contract, especially those regarding productivity and availability
guarantees (Milner & Pinker, 2001). The main disadvantages are the
training, remuneration and administrative costs incurred by the
retailer.

(4) Reallocation of multiskilled employees: Consists in transferring em-
ployees between different store areas or departments, implying that
the employees must be multiskilled for each area or department
they may be allocated to. This strategy allows shift hours to be
dynamically redistributed by making such reallocations for the
precise period the contingency lasts without incurring significant
labor cost increases. The main cost factors in this resource are the
training program and related workforce planning activity. For the
service industries and the retail trade in particular, Henao et al.
(2015) and Henao, Ferrer, Muñoz, and Vera (2016) showed that
total multiskilling is unnecessary. The best cost-effective perfor-
mance was in fact obtained from a combination of specialized (i.e.,
employees trained in a single skill) and multiskilled employees, the
majority of the latter trained in one additional skill.

(5) Shift modification and new shift assignment: A shift modification is
defined as a change made to an existing shift while a new shift
assignment entails creating a shift for an employee on a scheduled
day off. In the latter case it likely also involves the cancellation of
some other previously assigned shift. Generally, shift modification
is possible if employee acceptance is obtained. The disadvantage of

this resource is its lack of flexibility given that it does not allow for
small local adjustments, and like employee call-in it is subject to a
predefined advance notice requirement.

Various researchers have studied personnel scheduling adjustment
processes using recovery resources to mitigate the negative effects of
uncertainty (e.g. Bard &Wan, 2005; Pinker & Larson, 2003; Menezes,
Kim, &Huang, 2006; Hur, Mabert, & Bretthauer, 2004a; Hur,
Mabert, & Bretthauer, 2004b; Orsoni, 2004; Easton & Goodale, 2005).
However, they propose make the adjustments automatically and in a
single step, with no interaction involving the decision maker and the
affected employees. This implicitly assumes that all of the changes
suggested will be accepted by both the decision maker and the affected
employees. In practice, however, the limited availability of each re-
covery resource leads inevitably to a sequential decision process. Since
the willingness of any given employee to accept a proposed adjustment
cannot be known in advance, it is required a sequential decision process
that allows interaction between the decision maker and the affected
employees.

The present article proposes a contingency control system with in-
teraction based on employee schedule adjustment. Retailers generally
define a number of control points for weekly workforce planning de-
pending on their particular needs (e.g., one week beforehand, start of
the week, start of the working day). The proposed system is designed to
guide the decision maker at each such point in defining the best feasible
action plan for recovering as much as possible of the benefits that would
otherwise be lost due to a contingency. Additionally, the proposed
system also permits an interaction between the user/decision maker
and the affected employees. In Section 3, we provide a detailed de-
scription of our approach to develop a real-time system for adjusting
personnel schedules.

The contribution made by the present study to the personnel sche-
duling problem consists in the development of a system that provides
real-time support for decision makers tasked with determining sche-
duling adjustments to recover from a contingency once the system have
the information about the current demand, staff availability, and the
recovery resource alternatives. The proposed solution methodology
considers two types of contingency: demand uncertainties and un-
scheduled personnel absences. Two different methods for addressing an
identified contingency are designed. The first one is based on an
iterative algorithm that solves a relatively big mixed integer program-
ming model using column generation. The second one incorporates a
much more practical approach, evaluating the scheduling adjustment
alternatives by performing a local search routine and then greedily
applying the most beneficial adjustments. Finally, we present the re-
sults of the implementation of both proposed methods for a study case
of a Chilean retailer. Experiments are conducted using real-world in-
stances in order to evaluate and compare both methods under various
absenteeism scenarios and levels of priority for schedule planning sta-
bility. Note that, although contingencies can be attributed to demand
variations and/or unplanned personnel absences, in this study case the
experiments are conducted only for absenteeism.

2. Review of the literature

There exists an extensive literature on personnel scheduling that
addresses various types of problems and solutions with applications to
different industries. Thorough surveys of the field may be found in
Ernst, Jiang, Krishnamoorthy, Owens, and Sier (2004)a), Ernst, Jiang,
Krishnamoorthy, and Sier (2004)b), Alfares (2004) and Van den Bergh,
Belien, De Bruecker, Demeulemeester, and De Boeck (2013). It has been
shown that solution approaches to the general scheduling problem can
be either deterministic or stochastic, in the latter case by incorporating
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uncertainties into the schedule adjustment process. However, the great
majorities of studies stick to a deterministic view of the problem and
simply ignore contingencies involving demand variations or un-
scheduled personnel absences (Van den Bergh et al., 2013). A few deal
with the scheduled absence problem by assigning in advance more
hours than are needed to cover demand, but this technique cannot solve
the problem of adjusting personnel schedules when a demand or per-
sonnel supply contingency arises. As is noted in Easton and Goodale
(2005), anticipating absences via structural overstaffing not only in-
creases labor costs just as the contingencies it is designed to mitigate do,
but also reduces the future availability and efficiency of contingency
resources—hence the need for a real-time system for adjusting per-
sonnel schedules.

Previous works that have tackled the use of recovery resources for
schedule adjustment in the face of demand variations and/or unplanned
personnel absences are listed in Table 1 along with brief indications for
each study on the following key characteristics:

(1) Real Time Schedule Adjustment (RTSA): Indicates whether the study
addresses contingency management by making schedule adjust-
ments in real time (i.e., day to day or during the day) to cope with
unexpected demand changes and/or disruptions of labor supply.

(2) Absenteeism (A): Indicates whether the model of the problem ad-
dresses unscheduled personnel absences.

(3) Demand Uncertainty (DU): Indicates whether the model of the pro-
blem addresses uncertainty of demand.

(4) Adjustment Options: Indicates what actions are taken and resources
used by the proposed model as contingency management measures
to recover service levels.

(5) Objective Function: Indicates the components of the objective func-
tion.

(6) Method: Indicates what type of solution methodology is used.
(7) Application: Indicates in which industry or economic sector the

study was applied.

Brief reviews of each of the studies summarized in Table 1 are
presented below. We begin with those that do not present a solution
approach in real time and then consider those that do

2.1. Non-real time contingency control models

In Easton and Goodale (2002) the authors develop a short-term
model that optimally determines workforce size and work hours to
compensate for anticipated employee turnover and absenteeism. Their
premise is that both demand and employee availability are random
variables. They also assume a dynamic workforce that varies in ex-
perience and size due to resignations and hirings. In Pinker and Larson
(2003) a dynamic programming model is developed that determines the
optimal number of regular employees and the optimal size of a con-
tingent employee pool. Under this approach the decision maker makes
two sequential decisions in each period: how many contingent em-
ployees to hire and how many extra hours to schedule. However, the
affected employees are not involved in the decision process. Since it is
primarily concerned with staffing size decisions, the study focuses
mainly on the early planning stages but it draws some interesting
conclusions on the impacts of labor flexibility and information avail-
ability on contingent resources. In Bard and Wan (2005) the authors
create a model of weekly scheduling adjustments for the mail proces-
sing and distribution centers of the U.S. Postal Service. The model's
main purpose is to generate shift adjustments in the stages preceding
their execution. A set of heuristics are developed to solve the most
difficult instances, which are then evaluated in terms of computational
cost and solution quality.

In Menezes et al. (2006), the authors attempt to determine the op-
timal number of employees at a retail chain and how to distribute them
among the various stores. The problem is formulated as a multi-server
queueing system in which customers are served only when there is an
employee available. A greedy algorithm defines the optimal allocation
policy for each possible number of employees present based on demand
characteristics and the parameters of each store. Experiments are per-
formed to compare a scenario in which the stores coordinate their ac-
tions to share employees under the optimal policy with one in which
they act independently. In Cuevas et al. (2016) and in Henao et al.
(2015), the authors develop optimization models to simultaneously
assign days off and working shifts for each employee where each
working shift could have a different activity, shift start period and
length of workday. Particularly, Henao et al. (2015) explain that in the
presence of understaffing, the multiskilled employees always generate
greater savings in total costs than with strictly specialized personnel.
Finally, in Henao, Ferrer, Muñoz, and Vera (2016), the authors propose
a mixed integer linear programming model for the problem of weekly
assigning employees to the departments of a retail store under un-
certain demand. The solution method seeks to determine the optimal
staff levels of multiskilled and specialized employees for each depart-
ment store that minimizes the supply/demand mismatch.

2.2. Real time contingency control models

In Hur et al. (2004a) the authors study schedule adjustment policies
in the presence of absenteeism and demand fluctuations. Their objec-
tive is to evaluate the impacts on adjustment quality of decision maker
experience, the percentage of part-time employees and demand forecast
uncertainty. They conduct an experiment in which a large number of
decision makers make adjustments under hypothetical scenarios with
variations in workforce mix, demand forecast error and employee
willingness to accept schedule changes. Two worker adjustment ac-
ceptance levels were assumed. Worker acceptance captures the extent
that employees are willing to accept requested schedule changes. The
responses are evaluated by simulation and the results are compared to
the benefits of a benchmark solution generated by an automated shift
optimization system. In Hur et al. (2004b) the same authors focus on
the final phase of the adjustment period, developing a real-time ad-
justment model for a fast-food chain that uses contingent resources. The
first of two proposed solution policies maximizes productivity and
minimizes cost while the second stresses worker convenience in terms
of the number of adjustments and task rotations per employee. Heur-
istics are developed to solve the problem rapidly. In this second paper,
the proposed formulation assumes that the decision maker has identi-
fied all employees who are willing to accept schedule changes.

In Orsoni (2004) the author proposes a decision support system for
the assignment of resources to workgroups in a retail setting. The
system uses genetic algorithms and simulations to iteratively construct
assignments. One algorithm assigns the resources available for each
area twice a week and a second one operates when the assigned re-
sources are unavailable. Unlike the first algorithm the second one works
online, rescheduling resources every hour. It searches for available re-
sources in other areas based on customer demand in real time and the
current degree of utilization of each resource. In fact, at beginning of
each time unit the pool of available resources is updated according to a
stochastic available rate. The author shows that the amount of overtime
can be significantly reduced while still maintaining service and em-
ployee satisfaction levels through careful resource reallocation. In
Easton and Goodale (2005) the authors develop a model that de-
termines the best shift schedules and workforce sizes for a service sector
firm and a second model that uses contingent resources to handle de-
mand fluctuations and unplanned employee absences. In this paper, all
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the adjustments are made assuming that demand and actual personnel
availability are already known. The model can use planned overtime
and anticipated absenteeism during the process of creating schedules.
The study compares the performance of various contingent resource use
policies including the effects of factors exogenous to the model such as
worker productivity, the pattern and amplitude of demand and per-
capita labor costs.

In Zhang, Chakravarthy, and Gu (2009), the authors study how to
adjust production and workforce scheduling for a U.S. Postal Service
mail processing and distribution centre. The problem formulation
considers demand fluctuations and absenteeism, and the schedule ad-
justments are made day-to-day using overtime and employee call-ins. In
Campbell (2011), a two-stage stochastic program is developed for
scheduling and allocating multiskilled employees in a multi-department
service environment with random demand. The first stage schedules
days off over a time horizon such as a week or a month while the second
stage allocates the multiskilled employees at the start of each day to
match staffing with realized demand. Finally, in Easton (2011) the
author proposes a two-stage stochastic model that assumes demand is
variable and integrates decisions on multiskilling, staffing level and
employee scheduling and allocation. The first stage solves a determi-
nistic model that optimizes these decisions. The results are then in-
putted to the stochastic second stage, which uses a simulation model to
reallocate available multiskilled employees in response to random de-
mand variations and unscheduled personnel absences. In these three
papers, all the adjustments are made assuming that demand and actual
personnel availability are already known by the decision maker.

The literature on the use of recovery resources for schedule ad-
justment in real time demonstrates a considerable effort to improving
its understanding. All of the works reviewed above use methodologies
of one sort or another to determine the use of contingent resources in
the face of demand and/or supply variability. However, they employ a
one-stage decision process and do not permit interaction between the
decision maker and the affected employees. In all cited papers, the af-
fected employees are not involved in the decision process, since that all
the adjustments are made assuming that a pool of employees are willing
to accept the requested schedule changes. By contrast, we propose a
sequential decision process that allows interaction between the decision
maker and the affected employees. Thus, in our study a proposal for a
change can be or cannot be accepted/rejected by the decision maker
and the affected employees.

3. Description of the problem

The problem under study consists in providing real-time adjust-
ments in personnel scheduling to mitigate the negative impacts of the
inherent uncertainties involved in this process. Specifically, the pro-
blem we propose consists in a two-phase approach to schedule adjust-
ment and to improve customer service levels in a retail store. In the first
phase, employees are assigned to daily shift and days-off patterns over a
weekly planning horizon. The second phase, and the one that is the core
of this paper, concerns the real-time adjustments (i.e., day to day) using
shift scheduling recovery resources in response to the occurrence of
unexpected events (with interaction involving the decision maker and
the affected employees).

To develop a real-time system for adjusting personnel schedules we
propose the following approach. At the beginning of each working day,
the proposed system must answer three questions: (i) what recovery re-
sources should be used, (ii) where the resources can be obtained, and (iii)
how they should be applied. To answer these questions, the system must
have information on the updated expected demand for the day, the staff
availability that is expected to show up, and the recovery resource al-
ternatives. With this data we conduct an exhaustive search of the best

actions for adjusting staff levels to the updated demand forecast invol-
ving the remaining days of the planned week. But since the ultimate
feasibility of the available options cannot be determined without the
consent of the affected employees, the system suggests several actions for
one employee, each of them involving one resource - overtime, for ex-
ample, or a shift modification or a new hiring. The decision maker then
submits these options to the employee in question, who may reject some
or all of them. Based on the employee response, new actions for a second
employee are generated by the system. The process is iterated with other
employees until the system has no more alternatives to propose or the
decision maker determines that the contingency has been resolved.

3.1. Cost of recovery resources

Each of the system's recovery action options is represented by a new
weekly schedule for an employee and has associated costs that depend
on the nature of the action. These costs include the expense of a person-
hour, an extra hour (i.e., overtime), a penalty for changing an existing
schedule, replacing a shift with a day off, replacing a day off with a new
shift, and an multiskilled employee transfer from one store area to
another in a given period of the day.

3.2. Objective

The objective of the recovery system's search for the best action is
defined in terms of two factors: productivity and convenience.

In the case of productivity, the objective of any retail store is to
maximize store profits by reducing losses due to the mismatch between
demand and staffing level. For this reason, we agree with several stu-
dies listed in Table 1, which chose to disregard the cost minimization
objective and replace it with a utility function depending upon the
person-hours covering labor requirements for each area at each period
of time. Similar to Cuevas et al. (2016), we modelled the profits by a
marginal benefit function for each store area and period. This function
describes the marginal benefits of an additional person-hour, that is, the
benefits conferred by the presence of the n-th employee relative to
demand, and is assumed to be convex and decreasing in n. Cuevas et al.
(2016) explain that considering a decreasing marginal utility function
allows decision makers to assign the next employee according to the
areas and periods where the greatest marginal impact can be achieved.
Accordingly, the function is linearized and discretized into a certain
number of marginal benefit percentage ranges for each area and period
of the day. Each such benefit range represents a percentage of coverage
of demand of the labor requirements. It is assumed that the coverage of
one person-hour at a particular segment generates a fixed marginal
utility. Later, in Section 5.1, we will introduce in detail our approach to
calculate these marginal benefits.

As for the convenience factor, the idea is to reduce administrative
costs and favour a more stable personnel planning by minimizing the
cost of the staffing actions taken, the number and magnitude of the
modifications made to existing shift schedules. For this purpose, costs
are assigned to each available schedule depending on its characteristics
and the recovery resources used.

3.3. Modeling assumptions

Our formal definition of the problem incorporates a series of as-
sumptions: (1) The proposed solution is a system designed to take into
account the current week staff plan and demand forecast, all events
affecting staffing levels (e.g. absenteeism or training that was not ori-
ginally planned), demand variations with respect to the plan expected
for the day, and recovery resources availability. (2) The recovery re-
sources considered are: overtime, employees call-in; the transfer of
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multiskilled employees between store areas, and the modification or
elimination of existing shifts and the creation of new ones. (3) The retail
store has different areas, and the personnel requirements for each area,
time period, and day, is known and it is allowed to satisfy it only
partially, which involves a penalty cost. This cost varies by store area.
(4) The daily planning horizon is divided into small time periods (e.g.,
15 or 30min) in which the demand forecast is assumed constant. (5)
Each employee works under specific type of contract (i.e., full-time or
part-time). (6) For the sake of simplicity in the model, employees are
homogeneous in their productivity regardless of how many depart-
ments each of them is trained to work in, or in the number of hours that
the employee have already worked in the day. Henao et al. (2015) and
Henao et al. (2016) justify this assumption because the complexity le-
vels of tasks in retail are both low and rather uniform (compared with
other industries such as manufacturing, health, and call centers, for
which heterogeneous productivity is often assumed). (7) Each em-
ployee can work in a given set of feasible areas. Thus, our formulation
integrates multiskilling as an input. (8) Each employee has a base area
in the store and any “transfers” to other (non-base) areas have a cost
proportional to the hours assigned. (9) All shift adjustments to be of-
fered to employees still satisfy all legal constraints (i.e. minimum or
maximum number of hours to be worked in a day).

4. Methodology

As explained earlier, two different methods are proposed for solving
the problem. In the first one, we formulate a mixed integer linear
programming (MIP) model for solving iteratively the shift scheduling
problem. At each iteration the method searches for the best schedule
adjustments for each store area and permits transfers of multiskilled
employees from one area to another. In the second method, different
transfer alternatives and schedule modifications are evaluated by a
local search routine. The best alternative is then applied and the search
continues. The two methods are developed in the following subsections:
(4.1) Method 1: Iterative MIP system; and (4.2) Method 2: Greedy local
search system.

4.1. Method 1: Iterative MIP system

Barring a few minor differences, the iterative MIP model used in the
first method closely resembles a number of others found in the literature.
The model optimizes a set of areas but only one of them can receive the
multiskilled employees from the others. There are two reasons for this
restriction. One is that it greatly reduces the complexity of the general
problem in which transfers are made to and from any area, thus ensuring
the problem can be solved in a reasonable amount of time. The second
reason is that organizational structure and hierarchical issues may pre-
vent centralized decision-making on shift modifications and planning
changes for individual areas. In effect, decisions must often be made
separately for each case, a characteristic we exploit here to simplify the
model. By breaking down the problem thus, each partial solution can be
evaluated and the definitive solution can then be constructed progres-
sively, integrating accepted changes one by one. Furthermore, the area
receiving transfers can be checked after each iteration.

The method for solving the iterative MIP approach is explained in
the following subsections: Notation, Pre-processing, MIP model,
Column generation, and Execution of the system.

4.1.1. Notation
In this subsection we introduce the sets, parameters, and variables

that are used in the formulation of the model. We define a schedule as
the complete set of shifts an employee is planned to work over the
weekly planning horizon. For the purpose of this model, a schedule j is

defined by the elements αjt , where ∈t T , being equal to 1 if the em-
ployee is assigned to work in period t during the day being optimized,
and 0 otherwise.

Model sets:
T Subdivisions or periods over the daily planning horizon,

indexed by t . Periods of 15 or 30min are typical examples
R Benefits ranges, indexed by r
A Store areas or departments, indexed by a
E Employees of the store, indexed by i
Ea Employees belonging to store area ∀ ∈a a A,
Ya Employees qualified to work in area a but belonging to a

different area, ∀ ∈a A
′Si Selected weekly schedules for employee ∀ ∈i i E,
+Sit Schedules generated for employee i in which a transfer can

start in period ∀ ∈ ∈ ⊂ ′+t i E t T S S, , , it i
−Sit Schedules generated for employee i in which a transfer can end

in period + ∀ ∈ ∈ ⊂ ′−t i E t T S S1 , , , it i .

Model parameters:
∗a Area to which transfers can be made, ∈∗a A. We define

′ = ⧹ ∗A A a{ }, such that the set ′A does not include the area ∗a .
αjt Equal to 1 if an employee assigned to schedule j works in

∀ ∈ ′ ∈t j S t T, ,i
+γjt

Equal to 1 if schedule j allows a transfer to start in period
+ ∀ ∈ ′ ∈t j S t T1 , ,i

−γjt Equal to 1 if schedule j allows a transfer to end in period
∀ ∈ ′ ∈t j S t T, ,i

mat Minimum staffing level in person-hours for area a in period
∀ ∈ ∈t a A t T, ,

cij Total cost of all recovery resources (excluding relocation of a
multiskilled employee to a different area) needed for employee
i to work schedule ∀ ∈ ∈ ′j i E j S, , i

δa Cost associated with a transfer from area a to area ∗a , ∀ ∈ ′a A
ha Employee deficit penalty for each employee below the

required minimum in area a in any period, ∀ ∈a A
ratr Marginal benefit of a person-hour in area a, in period t , with

benefit range ∀ ∈ ∈ ∈r a A t T r R, , ,
ωatr Proportion of desired person-hours assigned to area a, in

period t , with benefit range ∀ ∈ ∈ ∈r a A t T r R, , ,
ϕat Desired number of person-hours for area a in period

∀ ∈ ∈t a A t T, , .

Model decision variables:
Uat Number of employees present in area a in period

∀ ∈ ∈t a A t T, ,
Xij Equal to 1 if employee i is assigned to schedule j, otherwise 0,

∀ ∈ ∈ ′i E j S, i
Hat Employee deficit in relation to required minimum number in

area a and period ∀ ∈ ∈t a A t T, ,
Ratr Number of employees covering area a, in period t , with benefit

range ∀ ∈ ∈ ∈r a A t T r R, , ,
+Vit Equal to 1 if employee i is transferred to area ∗a starting with

period +t 1, otherwise 0, ∀ ∈ ∈∗i Y t T,a
−Vit Equal to 1 if employee i stops working in area ∗a starting with

period +t 1, otherwise 0, ∀ ∈ ∈∗i Y t T,a
Pit Equal to 1 if employee i is transferred to area ∗a in period t ,

otherwise 0, ∀ ∈ ∈∗i Y t T,a

′Pit Equal to 1 if employee i is present in area ∗a in period t ,
otherwise 0, ∀ ∈ ∈∗i Y t T,a . Note that ′Pit is equal to Pit for any
period t in which employee i is not on lunch break.
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4.1.2. Pre-processing
The goal of the preprocessing stage is to determine sets of feasible

shifts assignments for each day and employee as a function of their
contract terms, personal restrictions and recovery methods. In a retail
store with real-world instances, the number of flexible shifts that could
be generated for a single employee is extremely high to be included in a
MIP model. To avoid having to enumerate all possible schedules for
each employee i, a set of possible schedules Si is expressed as a set Ji
containing all possible series of workday lengths of the form

…h h h h, , , ,1 2 3 7 that can be worked on days in the weekly planning horizon.
These series take into account restrictions associated with the em-
ployee, the number of hours stipulated in his or her weekly contract and
the amount of overtime he or she can work. They do not, however,
indicate the workday start period.

A set of possible shifts Sid for each day d in the horizon is also
generated. In addition to considering employee availability and re-
strictions, it specifies both the starting period of each workday and the
lunch breaks. As will be explained in the subsection on column gen-
eration, the use of these sets of workday length series Ji and possible
shifts Sid for each day will allow the model to search for the best can-
didates to be added to ′Si without having to enumerate all the elements
of Si, such that ′ ⊂S Si i.

4.1.3. MIP model
In this subsection we formulate the MIP model for solving itera-

tively the shift scheduling problem as follows:
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∈ ∀ ∈ ∈ ′X i E j S{0,1} ,ij i (14)

∈ ∀ ∈ ∈+ ∗V i Y t T{0,1} ,it a (15)

∈ ∀ ∈ ∈− ∗V i Y t T{0,1} ,it a (16)

′ ∈ ∀ ∈ ∈∗P i Y t T{0,1} ,it a (17)

⩾ ∀ ∈ ∈∗P i Y t T0 ,it a (18)

⩾ ∀ ∈ ∈U a A t T0 ,at (19)

⩾ ∀ ∈ ∈H a A t T0 ,at (20)

⩾ ∀ ∈ ∈ ∈R a A t T r R0 , ,atr (21)

The objective function (1) is given below, its four component terms
presented separately for ease of identification. The first term (a) max-
imizes the expected benefits; the second and third terms promote the
stability of the employees' assignments by penalizing the costs of
modifying schedules and applying the new version (b) and of trans-
ferring employees between different areas (c); and the last term (d)
penalizes assignments that generate employee deficits relative to the
minimum requirements for certain critical periods such as store
opening and closing times. Recall that, the model optimizes a set of
areas but only the area ∗a can receive the multiskilled employees from
the others.

The solution of the model must satisfy a series of constraint sets. The
first set, given by (2) limits the assignment of schedules to a maximum
of one per employee, the objective function itself guaranteeing that no
employee receives none. Constraints (3) count the presence of em-
ployees in area ∗a , including transfers from other areas. Constraints (4)
count the presence of employees in the remaining areas; deducting
those who have been transferred to area ∗a . Constraints (5) restrict the
size of each benefits range while constraints (6) assign the employees
present to each range. Note that the properties of the benefits function
ensure the employees are assigned to ranges in strict order from highest
to lowest, each range being filled before passing to the next lowest one.
Constraints in (7) count the employee deficit relative to the minimum
personnel requirement. Constraints (8) regulate the transfers, forcing
variables Pit to take a value of 1 only for the periods from the start to the
end of a transfer inclusive. The start and end periods themselves are
indicated by variables +Vit and −Vit , respectively. Constraints (9) and (10)
restrict the respective moments at which a transfer can start and end,
depending on the schedule assigned to the transferred employee. Lastly,
constraints (11)–(13) impose that a transferred employee complies with
the assigned schedule for the entire duration of the transfer. Finally,
constraints (14)–(21) define the domain of each variable.

4.1.4. Column generation
As was noted in Section 4.1.2., workdays Ji and schedules Sid for

each employee are generated during pre-processing. In this subsection,
a selection of schedules is accomplished by a column generation routine
set forth below as Algorithm 1. That is, to avoid that the model enu-
merates all the elements of Si, it is possible to use only a subset of these
elements ′S( )i using a column generation routine so that the problem
can be solved at minimal cost to the quality of the solution
(Easton & Rossin, 1991). Phase 1 of the algorithm evaluates, for each
day, the contribution of each possible shift Sid to the reduced cost of a
new column according to the formula given in (22). To simplify the
presentation, we have used vector notation. Thus, λ λ,n an and λin are
dual cost vectors of dimension T# associated with the constraints n, for
employee i and area a. The αj term indicates the availability of schedule
j and is also a #T-dimension vector, defined by the parameters αjt . The

+γ and −γ terms indicate the possibility of transferring multiskilled
employees at beginning and ending of any period, respectively. Both
are defined by the parameters +γjt and −γjt . All of the multiplications in
the equation are scalar products.

= ⎧
⎨⎩

− ∈
− − − − ++ −

∗
c

θ α λ if i E
θ α λ γ λ γ λ α λ α λ otherwise

,
.ij

ij j a

ij j a i i j i j i

3

4 9 11 11 12 (22)

Thus, the contribution of a possible shift on a particular day to the
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term θij is estimated from the costs associated with the shift such as the
cost of modifying it or adding extra hours.

Algorithm 1: Column generation routine

Phase 1: Evaluation of daily shifts
Step 1: For each day d, calculate the contribution of each shift in
Sid to the dual cost of any schedule.
Step 2: For each day, order the possible shifts by the value

computed in Step 1 and choose the best ones ̂Sid.
Phase 2: Generation of weekly schedules
Step 3: For each series of workdays in Ji, enumerate all

constructible schedules from the best shifts for each day, ̂ ∈S d D,id .

Step 4: For each schedule not yet in ̂Si, calculate the reduced cost cj

and add those with a positive cost to ̂Si.
In Phase 2, the best daily shifts are chosen according to some cri-

terion and are combined using the series of workdays Ji calculated in
Pre-processing (4.1.2.). The criterion we use is to take a selection of
schedules with the greatest reduced cost for each possible workday
length. Since the space we want to explore is defined by the number of
daily schedules used to generate the shift combinations, it is generally
advisable to avoid starting with many schedules that will never be used
and gradually increase the number as the solution improves. The costs
of the schedules themselves must also be added to θij. Among these are
the cost of eliminating an existing shift and, in the case of an call-in
employee, the cost of any extra hours above and beyond the minimum
guaranteed number.

4.1.5. Execution of the system
The result of Algorithm 1 is a weekly plan for each employee. These

plans may include changes from the original schedule and/or transfers
to area ∗a . Algorithm 2, which we now present, iteratively executes the
contingency control system to provide real-time support for decision
makers. Note that, the Algorithm 3 (subroutine of the Algorithm 2)
executes the MIP model to allow transfers of multiskilled employees to
a different area at each iteration. These routines completely describe
the optimization process.

Algorithm 2: Iterative recovery process

Phase 1: Preprocess
Step 1: Generate all possible workday series Ji and daily shift
options Sid for each employee.
Step 2: Order the areas according to their priority in a list denoted
AreasOptimize.
Step 3: Initially there are no modifications: Modifications ← ∅.
Step 4: Initially there are no transfers: Transfers ← ∅.

Phase 2: Optimization
Step 5: Remove the first area in AreasOptimize and assign it to ∗a .
Step 6: Solve the MIP model using the Algorithm 3 routine.
Step 7: Evaluate the changes in the solution. If they are all
accepted by the decision maker, go to Phase 3; otherwise, restrict
the possibilities to exclude the infeasible ones.
Step 8: Return to step 6.

Phase 3: Entry of modifications
Step 9: Enter each new or modified shift in the solution in
Modifications.
Step 10: Enter each transfer in the solution in Transfers.
Step 11: If AreasOptimize ≠ ∅, go to Phase 2; otherwise, process
terminates.
Algorithm 2 begins with the preprocess and then orders the areas in

accordance with some priority criterion. This ordering is important
because the first areas that are optimized will have priority access to
personnel excesses in other areas. One possible heuristic criterion is to
order the areas according to the benefits lost due to contingencies

compared to the original plan. Once it has ordered the areas, the al-
gorithm then solves the problem iteratively for each one. After each
iteration, the modifications made must be validated by the decision
maker. If they are rejected by an employee, the iteration must be re-
peated with added restrictions prohibiting the rejected possibilities for
that employee as infeasible. If the modifications are accepted, they
become permanent and any other possibility for the employee on the
days in question is prohibited. Since that the willingness of any given
employee to accept a proposed adjustment cannot be known in ad-
vance, this step 7 is very important in our Algorithm 2. It generates a
sequential decision process that allows interaction between the decision
maker and the affected employees.

Algorithm 3: Solution of the MIP model

Phase 1: Initialization
Step 1: Generate an initial solution using the current schedules
and the detected events (contingencies).
Step 2: For each modification in Modifications or shift in Transfers,
limit the possibilities of the employee to the modified shift.
Step 3: For each transfer in Transfers, if it is made to an area other
than ∗a , prohibit transfers during the period in question and

modify the model to include the presence of the transferred
employee in the receiving area.

Phase 2: Solution
Step 4: Solve the dual of the relaxed problem.

Step 5: Obtain the set ̂Si using the Algorithm 1 routine for each

employee ∀ ∈i E . If there is an i such that ̂ ≠ ∅Si , add the best n
schedules to ′Si and return to Step 4.

Phase 3: Elimination
Step 6: Eliminate all inactive schedules =X( 0)ij .

Phase 4: Termination
Step 7: Solve the model using the integrality constraints and the
set of remaining schedules.

To consider new transfers in the following iterations, in which they
may be received by a different area, the presence of each transfer is
simulated prohibiting new transfers during the affected periods and
modifying the areas' presence constraints (3) and (4). That is, the as-
signed transfers are marked in order to insure that the same employee is
not again transferred when looking at another area.

4.2. Method 2: Greedy local search system

Unlike the MIP system, the second proposed method employs a
greedy algorithm that searches for recovery resources by applying
heuristics similar to those a decision maker working manually would
use. The areas and periods affected by a contingency are identified
previously so that the actions taken can be directed exclusively at mi-
tigating the unexpected event. Although this algorithm explores a very
much reduced space in the set of existing recovery possibilities, the
strategy here is that since the number of such possibilities remains high,
a good level of recovery can still be achieved using only the most ob-
vious ones. One of the advantages of this algorithm is that each action is
applied individually without depending on the feasibility of any other
action. Another advantage is that since the possibility space is so much
smaller, the problem can be solved much more quickly.

4.2.1. Options used by local search
The options considered will depend on the employee but there are

only three basic movements:

1. Shift modification: consists in modifying a shift the same day the
contingency arises.

2. New shift: if the employee is not scheduled to work on the day of the
contingency, a new shift is assigned for that day and if necessary, a
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shift for a different day is eliminated.
3. Reallocation of multiskilled employees: for employees who belong to

an area other than the affected one, there are three types of trans-
fers: for the whole shift, for the period before lunch break and for
the period after lunch break.

4.2.2. Search routine
The search for options is performed iteratively for each area and day

affected. For each employee the movements are evaluated in combi-
nation with all of his or her shift possibilities for each day. In evaluating
each option, the change in benefits is divided into two parts. The first
part is the changes in the benefits and costs associated with the areas
involved, computed in terms of the marginal benefits and the penalties
for not meeting the minimum requirements in each period. The second
part is the change in costs associated with the employee's weekly
schedule and the type of recovery resource. All changes that have a
positive net benefit are stored for later evaluation by the decision
maker. Each step in the optimization routine is set out in Algorithm 4.

Algorithm 4: Local search optimization process

Phase 1: Initialization
Step 1: Modifications ← ∅, Transfers ← ∅, Actions ← ∅.
Step 2: For each employee, generate all possible shifts for each
day.

Phase 2: Movement search
Step 3: For each day and area affected by a contingency, search for
all the movements with a positive benefit and add them to
Actions.
Step 4: If Actions = ∅ the algorithm terminates.
Step 5: Order Actions by the benefit increase obtained with each
one.
Step 6: Present the options to the decision maker.
Step 7: Add the option chosen by the decision maker to the
modifications and transfers lists and then return to
Step 3. If no modifications or transfers are accepted, the

algorithm terminates.

5. Experiments, results and discussion

In this section we describe the experiments conducted to measure
the effectiveness of the solutions delivered by the two recovery system
methods developed in the preceding section. Then we present the re-
sults of the implementation of both methods for a study case of a
Chilean retailer. Measurements were made first for the iterative MIP
system in different scenarios and were then compared to the greedy
algorithm. The main indicators were the lost benefits recovered by the
systems and the number of modifications made to achieve the recovery.
Recall that, although contingencies can be attributed to demand var-
iations and/or unplanned personnel absences, in this case study the
experiments are conducted only for absenteeism.

5.1. Benefits function

The calculation of marginal benefits proceeds from two simple data
sets in the possession of the retailer. The first is the approximate person-
hour cost CH , which includes employee wage and all other employee-
related expenses. The second data set is the established customer ser-
vice standards for each area, from which sales and transactions fore-
casts can be converted into the optimal number of person-hours ∗h for
each period of the day. This is done either by quantitative methods
or on the basis of company experience. As for the retailer's utility
function B h( ), it must satisfy the following basic conditions: (a)

′ < ∀ ⩽ ∗B h h h( ) 0 , , and (b) ″ < ∀ ⩾B h h( ) 0 , 0. The first condition
states that it is always beneficial to have an additional employee as long
as the optimum has not yet been reached while the second condition

establishes that marginal benefits are decreasing.
In Cornejo (2007) the author attempted to determine which one of a

group of simple functions would best fit the data for a certain company
where experiments were to be performed. The planning tool developed
in this study is now used by the company to schedule its work shifts.
Based on these results, we chose the following function where >a CH :

= ⎧
⎨⎩

+ − ⩾
− + −

B h
a h b C h if h
a C h b a otherwise

( )
log( ) 1,

( ) ( ) .
H

H (23)

If, given the parameters of the company, ∗h is an optimum, marginal
benefits at this point are equal to marginal costs. Parameter a as a
function of ∗h is then:

= ⇒ =∗ ∗dB
dh

h a h C( ) 0 H (24)

Once the parameters are calculated we can calibrate the benefit
ranges. Assuming that range r extends from ∗ω h1 to ∗ω h2 , its utility for
each person-hour is given by:

= −
−

∗ ∗

∗r B ω h B ω h
ω ω h

( ) ( )
( )atr

at at2 1

2 1 (25)

5.2. Experimental design

All of the experiments used instances based on real data from two
stores belonging to a Chilean retailer. The processing times indicated
here are thus the actual figures for any one of its stores. The demand
forecasts, required for obtaining the benefits functions, were the same
ones originally used to draw up the retailer's work schedules with a shift
scheduling computer tool. These schedules are the best shift plan
known to the company and therefore will serve as our benchmark.

In the order to evaluate and compare the results of both recovery
system methods in different operating conditions, the problem was
solved for two stores. Our purpose here is to compare both recovery
system methods under various absenteeism scenarios and levels of
priority for schedule planning stability. In each store, we used to 30
employees at the same 3 departments or areas and their actual re-
strictions. We consider four absenteeism scenarios: 0%, 5%, 10%, and
20%. For the last three levels tested it was assumed the chance an
employee would not turn up for a planned shift was Bernoulli dis-
tributed with a probability of =p 5%, 10%, and 20%, respectively. The
recovery resources tested were the transfer multiskilled employees be-
tween store areas, the modification or elimination of existing shifts and
the creation of new ones. Three recovery scenarios were considered: (1)
Without recovery; (2) Without transfers; and (3) With transfers. The
transfers can be only for whole shifts or the whole part of a shift before
or after the lunch break. A sensitivity analysis was conducted on ben-
efits in relation to the number of shift modifications using multiple cost
levels for transfers and modifications in order to capture a variety of
situations in which implementation of the modifications ranged from
very easy to very difficult.

A total of 15 instances were simulated for each store and ab-
senteeism level. Each instance was solved using the iterative MIP
system algorithm implemented in C# on an ILOG CPLEX 12.4.0.1 op-
timization solver. Altogether, more than 1.000 different instances were
solved on a workstation with a 3.0 GHz Core 2 Duo processor.

For the scenarios in which transfers were permitted, the areas were
ordered heuristically from large to small according to the size of their
benefit loss percentages due to contingencies. The column generation
algorithm was configured to consider up to the 5 best schedules for each
possible workday. The algorithm was stopped after 8 generation stages or
when the maximum number of daily schedules considered had been
reached without adding new columns. In each stage of the generation, a
maximum of 30 schedules per employee was added. The solution re-
tained was the best one delivered by the MIP model in the first 150 s; the
remaining stages of the algorithm were not subject to any time limit.
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To make the desired comparisons between both recovery system
methods, all of the instances were run on the greedy algorithm with
absenteeism levels of 5% and 10%.

5.3. Case study results

The results and discussion of this case study are divided into the
following two subsections: Results with the iterative MIP system and
Comparison of the two recovery system methods.

5.3.1. Results with the iterative MIP system
The averages for the best recovery achieved in the 15 instances are

set out in Table 2 for each store and absenteeism level. The graphs in
Fig. 1 show how the benefits of the best generated solution varied from
the store's benchmark best benefit level (i.e., no absenteeism and with
transfers). In each graph, the top curve indicates the recovery achieved
with transfers, the middle curve the solutions without transfers and the
bottom curve the benefits with neither transfers nor modifications.

The system recovery levels, expressed as the percentage of benefits
lost due to the effect of a contingency on the store's original shift
planning that was recovered, are displayed in Fig. 2. The percentage of
original shifts that were modified is on the horizontal axis and the
curves represent the different absenteeism levels. Note that these results
refer only to expected benefits and penalties for employee deficits.

For both stores, these graphs reveal that the contribution of mul-
tiskilling was intimately related to a poor initial distribution of re-
sources between departments. As absenteeism levels rose, the addi-
tional benefits derived from transferring multiskilled employees grew
only slightly, the increase for Store 2 being superior at 1.67% to the
Store 1 increase of just 0.29%. Without multiskilling the recovery ca-
pacity improved steadily as absenteeism worsened, closing the gap with
solutions that included transfers. This occurred mainly because with
more contingencies arising there were more and better opportunities

for reassigning existing shifts. In both cases, maximum recovery capa-
city grew as contingencies increased in number. Also, as Fig. 2 shows,
the benefit recovery percentage declined as absenteeism rose because
the increase in net losses outweighed the increase in recovery capacity.
The figure further reveals that benefit recovery exhibited decreasing
returns to the number of modifications.

We also note that for both stores, maximum recovery was not
achieved from the solution with the most modifications. Though this
may seem contradictory, it must be kept in mind that the curves were
constructed using solutions generated by assigning different penalty
levels to the modifications rather than the best solution that could be
obtained with a certain maximum number of modifications. Although
the solutions found using different penalty levels were feasible in both
cases, it was discovered that when the penalties were very small the
column generation routine heuristics were unable to find the columns
of the best solution. This was so because the heuristics had to explore a
larger space and thus did not succeed in constructing weekly schedules
that were among the best solutions. Furthermore, the MIP problem
became more complex and the time limits imposed on the experiments
in many cases prevented the model from finding the optimal solution.
As was explained Hur et al. (2004b), there clearly exists a certain
number of modifications beyond which no further benefits are ob-
tained. In our case the best solution was always found when the number
of modified shifts was no more than 40%, counting transfers as shift
modifications.

In general terms, without multiskilling the loss recovery levels sta-
bilized when 15% to 25% of the shifts were modified, loss recovery
itself ranging between 13% and 23% depending on the absenteeism
level. With multiskilling, however, the results for the two stores were
very different. At Store 1, with approximately 30% of shifts modified
the recovery levels oscillated between 18% and 30% while at Store 2,
recovery stabilized with about the same proportion of modifications but
recovery levels reached 100% with 5% absenteeism and in the other
cases stayed above 30%. Thus, results show that in the worst scenario,
the proposed model's schedule adjustments reduced lost profits due to
unexpected variations by 18%.

5.3.2. Comparison of the two recovery system methods
Recovery capacity for both methods with 10% absenteeism is shown

in Fig. 3. As can be seen, the greedy algorithm was outperformed in
every case by the iterative MIP system. This occurred because given the
way the greedy algorithm constructs its solutions, the number of
modifications made is always fewer than with MIP. Table 3, which
shows the averages for solution times and objective function value loss
recovery (the latter after deduction of modification costs), confirms that

Table 2
Best recovery averages for all instances.

Absenteeism Store 1 Store 2

Without
recovery

Without
transfers

With
transfers

Without
recovery

Without
transfers

With
transfers

(%) (%) (%) (%) (%) (%) (%)

0 100.00 100.00 100.29 100.00 100.00 101.67
5 97.00 97.65 97.92 97.32 97.89 100.35
10 93.67 94.76 95.16 91.73 93.30 95.97
20 88.15 89.82 90.46 86.88 88.82 91.29

Fig. 1. Recovery capacity for different absenteeism levels.
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Fig. 2. Recovery percentage by number of modifications and absenteeism level.

Fig. 3. Performance of the two algorithms with 10% absenteeism.
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although the iterative MIP system was much slower, its results were far
superior. Also note that, none of the methods were able to find a better
solution without resorting to multiskilled employees.

6. Conclusions and future research

Two methods for solving the contingency problem in workforce
scheduling were developed and evaluated. Both make use of all the
standard recovery resources identified in this study. The first method is
built around an iterative algorithm that solves a relatively large mixed
integer programming (MIP) model by column generation. The second
method takes a more practical approach, using a greedy algorithm to
apply the most beneficial shift modifications in response to con-
tingencies identified previously. Experiments were carried out to
compare the results of the two methods using real data from two stores
belonging to a Chilean retail chain.

The results of the experiments demonstrated that much of the
benefits lost due to unexpected events could be recovered using a
contingency control tool. The transfer of multiskilled employees to
store areas affected by a contingency proved to be an excellent recovery
tool in cases where there was a potential benefit not exploited in the
original workforce planning. In every case, such transfers mitigated the
impact of the contingency on the various store departments and
achieved equal or better recovery levels with few modifications to ex-
isting shifts.

Comparisons of the two methods indicated that if the same cost was
attributed to all possible modifications, the most obvious actions re-
presented by the greedy algorithm led to solutions with lower recovery
levels than those of the iterative MIP system. Even when greedy was
two orders of magnitude faster than MIP, the latter solved every in-
stance in a reasonable length of time. In real-world situations the pos-
sibilities of an employee are a mere fraction of those that were assumed
in the experiments, suggesting that the range of problems solvable with
the iterative MIP system would include much bigger cases than the one
used here. Since in practice a solution involving modification of more
than 40% of the shifts is unlikely to be implementable, the heuristics
performed well over real operating ranges.

The proposed iterative MIP system is thus an effective tool for
contingency control and recovery problems, using all of the standard
shift scheduling recovery resources and integrating optimization with a
process in which individual actions must be validated and selected for
application by a decision maker. Since such interaction is necessary
between the decision maker and the affected employees, reducing the
time required by the iterative algorithm to find and present a series of
shift modifications is of prime importance. Four possible approaches to
reducing solution times involve implementing a branch and price
methodology for the MIP problem, generation heuristics, the treatment
of multiskilling, and the use of initial solutions. The first one, would be
a hybrid method where the column generation is coupled with a
branch-and-bound method. On the second approach, weekly shift
schedule heuristics could be improved to find good solutions more
quickly. Including randomness in the generation process should also be
explored as a way of increasing variety in the shifts selected. A further
possibility would be to search in larger spaces during generation with

heuristics based on constraint programming using techniques of the sort
described in Demassey, Pesant, and Rousseau (2005) and Demassey,
Pesant, and Rousseau (2006).

As regards multiskilling, this adds much complexity to the MIP
problem. To speed execution, this factor could be treated during the
column generating phase by incorporating the search for good em-
ployee transfers into the schedule selection process. Finally, using so-
lutions found by faster algorithms such as the greedy routine could also
help in lowering solution times.

As was noted earlier, when the solutions are restricted to those with
a limited number of modifications, the greedy algorithm performs si-
milarly to the iterative MIP system. If we assume that in practice only
such solutions are feasible, improving solution quality using the greedy
algorithm may be a good alternative. One possible enhancement would
be to include randomness in the choice of modifications during con-
struction of the solution, thus generating multiple solutions during the
search and thereby increasing the chance of finding a good one. Also,
the algorithm's fast solution times together with the properties of the
problem could be exploited to explore actions that involve more than
one modification at a time, choosing the best series of modifications at
each step.

Finally, the user interface is a key factor if it intends to achieve a
successful real implementation of the proposed system. Thus, under the
implementation of our real-time system for adjusting personnel sche-
dules, decision makers must make improvements on their actual user
interface of the system. Such improvements should allow an effective
and fast interaction between the decision maker and the affected em-
ployees.
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