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ABSTRACT

The U.S. service sector loses 2.3% of all scheduled labor hours to unplanned absences,
but in some industries, the total cost of unplanned absences approaches 20% of payroll
expense. The principal reasons for unscheduled absences (personal illness and family
issues) are unlikely to abate anytime soon. Despite this, most labor scheduling systems
continue to assume perfect attendance. This oversight masks an important but rarely
addressed issue in services management: how to recover from short-notice, short-term
reductions in planned capacity.

In this article, we model optimal responses to unplanned employee absences in multi-
server queueing systems that provide discrete, pay-per-use services for impatient cus-
tomers. Our goal is to assess the performance of alternate absence recovery strategies
under various staffing and scheduling regimes. We accomplish this by first developing
optimal labor schedules for hypothetical service environments with unreliable workers.
We then simulate unplanned employee absences, apply an absence recovery model, and
compute system profits.

Our absence recovery model utilizes recovery strategies such as holdover overtime,
call-ins, and temporary workers. We find that holdover overtime is an effective absence
recovery strategy provided sufficient reserve capacity (maximum allowable work hours
minus scheduled hours) exists. Otherwise, less precise and more costly absence recovery
methods such as call-ins and temporary help service workers may be needed. We also
find that choices for initial staffing and scheduling policies, such as planned overtime
and absence anticipation, significantly influence the likelihood of successful absence
recovery. To predict the effectiveness of absence recovery policies under alternate staff
ing/scheduling strategies and operating environments, we propose an index based on
initial capacity reserves.

Subject Areas: Labor and Staff Planning, Mathematical Programming/
Optimization, Service Operations, Staff Planning, and Workforce
Scheduling.
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INTRODUCTION

Unplanned employee absences in the U.S. service sector consume 2.3% of all
scheduled work hours (Bureau of Labor Statistics, 2001) and according to some
surveys, 15-20% of total payroll expense (Mitchell, 2001; Anonymous, 2002;
Robinson, 2002). Absence costs include direct expenses such as sick leave and
salary continuation benefits (Ferguson, Ferguson, Muedder, & Fitzgerald, 2001).
They also include indirect expenses such as the wages and overtime paid to co-
workers or temporary workers to replace absent employees, the value of lost produc-
tion, the administrative effort to secure qualified replacements, and the productivity/
quality losses that occur when employees are reassigned to unfamiliar positions
(Allen, 1981; Hinkin & Tracey, 2000). These costs motivate many of the more than
500 scholarly papers and books written about employee absenteeism in recent years
(Harrison & Martocchio, 1998).

The absenteeism literature focuses largely on the explanation (Steers &
Rhodes, 1978; Steel & Rentsch, 1995), measurement (Watson, Driver, & Watson,
1985), and mediation (Buschak, Craven, & Ledman, 1996) of unplanned absen-
teeism. However, policies for managing the immediate operational consequences
of unplanned absences, which occur whenever employees are not present during
their scheduled work hours, are rarely discussed. Unplanned absences temporar-
ily reduce effective service capacity, often with minimal advance notice. Capacity
losses from even very short-term unplanned absences, such as tardy arrivals or early
departures, have the potential to disrupt operations. Operationally, it matters little
whether an unplanned absence is voluntary (culpable) or involuntary; the impact
on capacity is the same.

We consider absence recovery to be the managerial response to short-notice
capacity losses due to unplanned absences. The recovery process first acknowledges
unplanned capacity losses, then generates and evaluates feasible alternatives to
replace the lost capacity, and finally selects and implements an appropriate option.
In this article, our goal is to characterize the absence recovery problem and analyze
both active and passive absence recovery options. With passive absence recovery,
organizations simply disperse the work of missing employees among the workers
who did report for duty as scheduled. Active absence recovery can be accomplished
with holdover overtime (keeping people on duty a few extra hours beyond the
scheduled end of their shift) and/or call-ins (activating an on-call employee enjoying
a scheduled day off), or by contracting with temporary external workers to cover
unplanned absences (Moore, 1965; CTI, 2002). Each absence recovery option
provides different capabilities, availability constraints, and relevant costs.

Absence recovery effectiveness may often be affected by the firm’s short-
term staffing and scheduling decisions, which govern the size and capabilities of
the workforce and how they are deployed over time. In the call-center industry,
for example, some managers inflate the forecasts of hourly labor requirements
by an allowance factor for anticipated absenteeism (Gans, Koole, & Mandelbaum,
2003). To effectively counter capacity losses due to attendance problems and ensure
that enough scheduled workers are present to satisfy target service levels, some
consultants suggest that the minimum hourly labor requirements should be grossed
up by as much as 10—40% (Chadwick-Jones, 1981; Durr & Matan, 2002). The main
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advantage of this anticipatory staffing and scheduling strategy is that it simplifies the
administrative effort needed to recover from unplanned absences and reduces the
need for active absence recovery efforts such as overtime, call-ins, or temporary
workers. However, it also significantly increases per-capita costs such as fringe
benefits and training expenditures.

Other staffing strategies may exacerbate the impact of unplanned absences
and constrain recovery options. For example, in the U.S., 29% of all employees
work more than 40 hours each week (U.S. Census Bureau, 2002b). Their employers
often rely on scheduled overtime to help avoid hiring additional staff. Although
planned overtime helps reduce total wage and benefit expenses, it tends to result
in larger voids whenever employees assigned to overtime schedules are absent.
Furthermore, planned overtime staffing often leaves fewer workers who are avail-
able and willing to accept additional, short-notice overtime assignments to cover
unexpected capacity shortages.

Ideally, absence recovery mitigates the effects of unplanned absences without
serious harm to customers, employees, or profits. In most service organizations,
the basic absence recovery process is very similar. After learning of an unplanned
absence, managers first evaluate feasible alternatives for covering the loss of pro-
ductive capacity (including “do nothing”) by weighing the costs and benefits of
each, then selecting the most promising option and implementing it. Although
estimating the costs of each absence recovery option tends to be straightforward
in most organizations, estimating the benefits of service recovery is often more
complicated and perhaps even industry-specific.

In this article, we model absence recovery decisions for multiserver queue-
ing systems that provide discrete, pay-per-use services for impatient customers.
We assume that system revenue varies with the number of completed service trans-
actions and that customers tend to abandon the queue when waiting times become
excessive. Fast-food establishments, retail stores, walk-in medical clinics, inbound
retail call centers, transportation networks, and automobile repair businesses are a
few examples of the kinds of enterprises that often have these characteristics. An
excellent, detailed example of such a system is described in the Sof-Optics, Inc.
(A) case (Sasser et al., 1991). However, our approach may not be appropriate for
systems in which it is difficult to estimate the expected marginal revenue produced
by successive units of labor. Examples of such systems include those that main-
tain a continuous, long-term relationship with their customers and impose high
switching costs (an insurance company or police protection), systems in which
waiting costs are borne primarily by the customer (some government services),
or in which monetary opportunity costs for service delays are difficult to measure
(e.g., a nursing unit in a hospital).

Our purpose is to characterize and evaluate the performance of alternate
absence recovery strategies under various staffing and labor scheduling policies.
In addition to the important insights about the process of absence recovery that are
suggested by our experimental data, we believe this project provides at least three
other important contributions to the literature. First, to the emerging literature
dealing with real-time schedule adjustment (Thompson, 1999; Hur, Mabert, &
Bretthauer, 2004) we formally introduce and model the absence recovery problem
for service operations. Second, we identify worker absenteeism as a heretofore
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overlooked source of uncertainty for labor scheduling decisions and propose a new
labor scheduling model that represents that uncertainty. Third, we propose a new,
marginal revenue-based method for determining the ideal staffing levels for each
planning interval. This approach, based on estimates of losses due to reneging, is a
distinct alternative to simpler, fixed-response time approaches that are often used
to determine minimum staffing requirements for multiserver queueing systems
providing pay-per-use services for impatient customers.
In the following sections, we:

(1) Review the economic consequences of absenteeism, describe popular ab-
sence recovery policies, and discuss staffing strategies that may affect
absence recovery performance.

(i) Review staffing/scheduling models, describe our labor scheduling model
for systems facing absenteeism, and introduce our absence recovery
model. This model reduces to an easily solved integer generalized net-
work for certain recovery policies.

(iii) Describe our experiments to test staffing and recovery policies and present
our results.

(iv) Presentour conclusions, discuss some limitations of our study, and suggest
avenues for future research.

ECONOMIC CONSEQUENCES AND RECOVERY
FROM ABSENTEEISM

Widely reported surveys by Commerce Clearinghouse (CCH, 2003) and the In-
tegrated Benefits Institute (IBI, 2000) estimate employers spend $750-$800 per
employee per year for unplanned absences. However, these figures do not include
the indirect costs of unscheduled absences: overtime pay for other employees,
costs of temporary workers who replace absent employees, productivity losses,
and supervisory time spent rearranging work schedules. In their survey of 11 ma-
jor telecommunications firms, for example, IBI (2000) found that absence-related
benefit costs and productivity losses cost these employers $11.5 billion in 1999,
8% of their total revenue.

Out-of-pocket benefit costs are easy to identify; the measurement of pro-
ductivity losses due to absenteeism is more complex. Unplanned absences reduce
service capacity and often increase waiting time. The utility of the service usually
decreases with waiting time, especially when the expected duration of the wait can-
not be estimated (Osuna, 1985). In many systems, increased disutility reduces the
likelihood of subsequent trials (Anderson & Sullivan, 1993) and the average pur-
chase amount (Andrews & Parsons, 1993). Increased waiting time also increases
the likelihood that arrivals will abandon the queue before service is initiated (Ittig,
2002).

In this article, we focus on systems that incur an expected economic loss
equal to the average revenue per transaction whenever a customer abandons the
queue. To estimate these losses, we must first characterize reneging behavior in
queues. Suppose patience (or willingness to wait) is unique for each customer and
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independent of other customers. In such cases, the probability that customers will
continue to wait tends to resemble an exponential process (Carmon, Shanthikumar,
& Carmon, 1995; Whitt, 1999). This assertion may not hold for all queueing
situations, however (Zohar, Mandelbaum, & Shimkin, 2002).

Abandonment or reneging reduces the effective arrival rate (Aeff;), and
sales/period, but it also speeds up the line for those still waiting. To estimate the
potential for revenue loss in a multiserver queue with impatient customers, Easton
and Goodale (2002) computed the number of arrivals that remained in the system
until service completion. They assumed that during period ¢, customers arrived at
a system at rate A, (Poisson-distributed) and abandoned the queue after waiting an
average of @ ~! (exponentially distributed). With s identical servers working during
period ¢, each operating at mean service rate u (Poisson-distributed), they showed
that server utilization U, is:

A A -1 N . 00
Ueﬂ: eﬁt(hu’s’a )=Z<;—>F1+Z§Fj

Sp i=0 j=st1

5 () + (1 . z) |

Thus, the effective arrival rate, leff,(A;, W,s, a‘l) = suUqp, can be deter-
mined from the state probabilities F; for an M/M/S +M queueing system, where the
“4+M” suffix to the standard queueing description denotes an exponential reneging
distribution (Bacelli & Hebuterne, 1981). That is, for any period ¢,

reff,(re, pty 5,07 =;L|:ZiF,- +s (1 _ZFk>] )
i=1 k=0

Gross and Harris (1998) outlined the derivation of the stationary state proba-
bilities F'; for M/M/1 +M (a single-server queueing model in which the probability
of waiting patiently decreases exponentially with queue time). Whitt (1999) de-
scribed state-dependent transition rates for the multiserver birth-death process with
exponential reneging and balking. Garnett, Mandelbaum, & Reiman (2002) derived
the state probabilities F; for finite multiserver queues with blocking and exponen-
tial reneging (M/M/S/N +M). Simultaneously, Easton and Goodale (2002) derived
the state probability equations for M/M/S/oo +M and suggested an approximate
procedure to evaluate state probabilities F; for an arbitrary level of precision.

Because queue time generally falls with increased staffing levels, we also
expect reneging to diminish (and the effective arrival rate to increase to A,). Let M,
be the staffing level where A.z(A;, ., M, a~') = A, (that is, no reneging occurs). If
R, is the average revenue per completed transaction during period ¢, the incremental
revenue generated by the ith employee servicing customers during period ¢, or 7y,
is:

ri = R e (hes poive™) = Aegg(Aey i — La™")], fori=1,....,M,. (3)

&)

It follows from the asymptotic behavior of A.z(A;, w, i, o~ 1) that r; is non-
increasing in i, the number of servers.
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Table 1: Effective arrival rate and marginal revenue for various staffing levels
s when A = 50/hour, ;1 = 12/hour, a~' = 5/60 hours, and R = $10/completed
transaction.

reff (A, s, ah) rii

©

1 11.814 $118.14
2 22.853 110.39
3 32276 94.23
4 39.457 71.81
5 44.301 48.44
6 47.199 28.98
7 48.744 15.45
8 49.484 7.40
9 49.805 321
10 49.932 1.27
11 49.978 46
12 49.993 15
13 49.998 .05
14 49.999 .01
15 50.000 .01

We apply this concept in a brief example to illustrate the value of capac-
ity lost due to unplanned absence. In Table 1, we assume the average arrival rate
A = 50 customers/hour, the mean service rate . = 12/hour, the average patience
a~! = 5 minutes, and the average revenue/transaction R = $10. Suppose nine
workers were scheduled for duty during this period, but one was absent. The ex-
pected value of the lost production, the marginal revenue generated by the ninth
worker (r9), is $3.21 (i.e., Aey(As, 1, 9, al) — Aegr(Ary 14, 8, a1 = .321 more
customers renege), a useful measure for evaluating the value of alternate recovery
options.

We can also use the marginal returns in Table 1 to assess the economic impact
of unplanned absences. For example, suppose four employees are scheduled for
duty during period ¢ and absenteeism averages A = 20% of scheduled hours. That
is, of the four workers scheduled we expect that only (1 — .2) x 4 = 3.2 employees
will actually report for duty during period ¢. The first three employees will pro-
duce $118.14, $110.39, and $94.23 per hour, respectively. The fourth (fractional)
employee will produce .2 x $71.81 per hour, so the expected hourly income with
four scheduled employees is $337.12. The expected hourly cost of lost productivity
due to absences is the difference between the revenue produced by four reliable
employees ($394.57) and the expected income, or $57.45.

Active recovery from an unplanned absence requires flexible, reserve capac-
ity. In Table 2, we summarize the major options that service organizations use to
recover from unplanned absences. The simplest absence recovery option is passive
recovery, in which the workload of absent coworkers is dispersed among the em-
ployees who report for duty. This may be appropriate if, due to scheduling rules or
the vagaries of demand, the unit’s original labor schedule provided excess coverage
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Table 2: Recovery options for unplanned absences.
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Recovery Option

Indirect Costs

Recovery Constraints

Do nothing

Transfer cross-trained
employees from
lower-priority
assignments

Holdover employee

(extend regular shift)

Call-in employee

Temporary (THS)
worker

Lost sales, revenue, and
goodwill

Employee resentment
Training expense
Reduced productivity
Wages paid to cover
transferred absence

Additional wages (often
overtime)
Reduced productivity

Standby expense
Additional wages (often
overtime)

Show-up pay
Temporary wages and
markup

Training expenses
Reduced productivity
Administrative costs

Not applicable

Match employee skills
with assignment

Cover absence in sending
department

Match shift-end with time
of absence

Observe meal and rest
breaks

Maximum shift and tour
lengths

Observe minimum and
maximum shift and tour
lengths for call-ins

Cover absences on days off

Observe minimum
assignment duration for
THS workers
Recognize reduced
productivity

during the periods of the unplanned absence. For smaller service units with high
skill requirements, this may be the only practical option. However, the “do nothing”
option may adversely affect employee morale, customer service, and the prospect
for future sales (Buschak et al., 1996).

Some multitask operations invest in cross-training and recover from un-
planned absences by reassigning personnel to more urgent tasks when shortages
arise. However, this approach merely shifts the location of the unplanned absence
to the department from which the reassigned worker was sent. Ultimately, the de-
partment with the personnel shortage must recover (often with overtime work).
In addition, reassigning personnel to cover shortages in other areas may not be
feasible if the sending and receiving units experience similar demand patterns. A
more popular option is holdover overtime, in which employees work beyond the
scheduled end of their shift to cover an emergency staffing need. Holdover over-
time is the preferred absence recovery technique for 41% of the CTI (2002) survey
respondents. However, some employers find that short-notice overtime increases
workplace stress and exacerbates absenteeism problems. This may explain why
28% of the firms in the CTI (2002) survey cover unplanned absences exclusively
from an on-call pool of trained, off-duty employees who are willing to report for
duty on short notice. Work rules governing call-in assignments typically require
minimum work stretches (four to eight hours), plus additional “standby” wage
payments (Hirschman, 1999).
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Finally, some organizations cover unplanned absences by outsourcing. Tem-
porary help service (THS) firms (i.e., nursing registries or firms like Manpower,
Inc., or Kelly Temporary Services) are labor market intermediaries, employing per
diem workers whose services are sold to other employers. The THS industry ex-
ceeds $40 billion per year in sales, and provides a wide range of staffing options
(Greble, 1997). However, our interest is with the coverage of unplanned absences.
Surveying 1,200 firms in industries that rely heavily on THS workers (health care,
business services, finance, and insurance), Mangum, Mayall, and Nelson (1985)
found 23.4% of all THS appointments were for durations of one to two days,
near the modal duration reported for unplanned absences (Globerson & Nagarvala,
1974).

Segal and Sullivan (1997) found negligible differences in the wages paid
to temporary and permanent workers after adjusting for skills and experience.
Furthermore, they report that clients pay an average markup equivalent to 40% of the
THS worker’s wages to cover the agency’s fringe benefits, labor and administrative
costs, and contribution to profit. Like call-in employees, THS workers are usually
assured a minimum work stretch. Finally, with limited training, THS workers may
be confined to entry-level assignments (Davis-Blake & Uzzi, 1993).

The set of absence recovery options available to front-line supervisors may
be limited by their organization’s staffing and scheduling strategies. In addition to
staffing strategies related to the use of THS workers, at least two other strategic
staffing decisions may affect a firm’s ability to recover from unplanned absences.
One is the adoption of anticipatory staffing strategies, in which some absenteeism
is assumed and the firm staffs accordingly. For example, some firms overstaff each
work period by 10-40% above estimated needs (Chadwick-Jones, 1981; Durr &
Matan, 2002). That way, when some employees fail to report for duty as scheduled,
extra personnel are already present to cover the shortage.

Anticipatory staffing strategies may reduce administrative effort but may also
require a larger workforce and greater recruiting, training, and per-capita expenses.
Per-capita expenses vary with the number of employees rather than the number
of hours each employee works. Accounting for 25.8% of total labor costs (U.S.
Census Bureau, 2002a), these expenses include pension and retirement benefits,
life insurance and health care benefits, unemployment insurance premiums, paid
vacations, sick leave, and paid holidays (Ehrenberg, 1989). Still, overstaffing may
be an effective strategy if per-capita costs are low and workers are not indemnified
for unplanned absences (Easton & Goodale, 2002). If workers do receive sick pay,
however, optimal staffing levels may be reduced because effective hourly wages
per worker increase by 1/(1 — absence rate).

Another staffing strategy that may exacerbate the impact of unplanned absen-
teeism and inhibit the firm’s ability to recover from unplanned absences is the use
of planned overtime. Many firms substitute planned overtime for hiring (Hetrick,
2000). Although overtime work usually requires premium pay, it helps reduce the
total number of permanent employees needed to staff the system, and thus helps
reduce total per-capita labor expenses. Unfortunately, if an employee scheduled for
planned overtime is absent, a larger block of time is affected. With fewer employees
working longer hours, there are fewer off-duty employees available to respond to
unplanned absenteeism.
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STAFFING/SCHEDULING AND ABSENCE RECOVERY

Many service organizations with absenteeism problems face consumer demands
that vary from hour-to-hour and day-to-day. Because service capacity usually can-
not be stored, they risk lost sales if their services cannot be produced upon demand.
Furthermore, their service capacity decisions, in the form of employee work sched-
ules, are usually made a week or more before either customer demand or employee
absenteeism is realized. These decisions are often constrained by work rules that
limit the types of acceptable multiday work schedules for their employees with
respect to minimum and maximum shift lengths, tour lengths, rest periods, days
off, allowable shift start times and start-time variation, the proportion of full-time
to part-time workers, etc. Labor scheduling decisions have intrigued researchers
for half a century.

Most models for labor scheduling decisions assume 100% attendance. As
defined earlier, we consider absence recovery to be the process of acknowledging
an unplanned absence, planning a recovery strategy, and implementing it through
changes in the labor schedule. Because labor staffing and scheduling decisions
control the size of the workforce and how employees are deployed over time, they
may also affect the operational and economic impact of unplanned absences and
the effectiveness of absence recovery policies.

Models for labor scheduling decisions were originally cast as deterministic
generalized set covering problems (Dantzig, 1954; Baker, 1976; Bailey, 1985; Gans
& Zhou, 2002; Gans, Koole, & Mandelbaum, 2003). Deterministic goal programs
(Keith, 1979; Andrews & Parsons, 1989, 1993) were later developed to address
concerns of economic asymmetries between under- and overstaffing. Bechtold and
Jacobs (1990), Mabert and Watts (1982), and others proposed heuristics to reduce
the state space and improve the tractability of these problems.

Most early labor scheduling models were constrained by a vector of mini-
mum labor requirements. Based on demand forecasts (in units characteristic of the
service), these parameters were often estimated by varying target staffing levels
for each period to find the best balance between expected labor costs and shortage
expenses (Baker, 1976). Each period was regarded as an independent epoch, using
the average hourly wage as an approximation of marginal labor costs. Implicitly,
an employee could be scheduled for as little as a single period of work, an assump-
tion that usually violates local scheduling rules (e.g., “all part-time employees
scheduled to work during a particular day will be guaranteed a shift of at least
four hours”). As noted by Baker (1976), when true incremental labor expenses
differ from the assumed value, the labor requirements parameters determined by
marginal analysis may be suboptimal. To counter this limitation, Thompson (1995)
and Easton and Rossin (1996) integrated labor requirements planning with staff
ing and scheduling decisions to optimize service levels. Their approaches, specif-
ically designed for systems with stochastic service demand, avoided the need to
approximate marginal labor costs. Finally, Pinker and Larson (2003) proposed a
staffing model for uncertain demand that optimized the mix of regular employees
and contingent (THS) workers for single-shift, back-office service operations.

Although most existing labor scheduling models still assume 100% atten-
dance, Gans et al. (2003) reported that some call-center managers create labor
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schedules that have capacity cushions to help protect the system from unplanned
absences. Easton and Goodale (2002) proposed an anticipatory labor staffing/
scheduling model for service operations with stochastic service demand, customer
patience, and employee turnover. However, neither of these approaches consid-
ers active absence recovery strategies such as holdover overtime, call-ins, or THS
workers.

Because the performance of alternate absence recovery approaches may de-
pend on the staffing and scheduling policies adopted by an organization, and we
wish to consider both active and passive recovery approaches, we begin this sec-
tion by adapting Easton and Goodale’s (2002) staffing/scheduling model to include
relevant features such as sick pay, per-capita costs, and the ability to accommodate
alternate staffing strategies such as planned overtime. Like Easton and Goodale, we
assume that the number of customer arrivals/hour and hourly service rates per em-
ployee are Poisson-distributed random variables with means A; and i, respectively.
We also assume that completed transactions earn an incremental contribution (in
dollars) before labor expense, and that customers have limited patience and will
abandon the queue after waiting an average of a~! (exponentially distributed).
Finally, we assume that absenteeism is uniformly distributed over the planning
horizon, with each employee shift equally susceptible to loss. Unlike Easton and
Goodale (2002), we ignore employee turnover and the effects of learning. In ad-
dition, we assume that fringe benefits and sick pay accrue to employees whether
they report for duty or not. However, we exclude wage payments for the expected
portion of planned overtime that will be lost to unplanned absences.

We implement alternate staffing strategies such as planned overtime by spec-
ifying the work rules that constrain the set of feasible employee schedules or tours.
A tour can be uniquely defined by specifying the workdays in the planning horizon,
the shift starting time and ending time for each workday, and the timing of meal and
rest breaks during each shift. In general, the cardinality of the set of feasible tours
increases with the amount of scheduling flexibility permitted by the organization’s
work rules. Mechanisms for efficiently generating feasible employee schedules
from these parameters are discussed in Mabert and Watts (1982); Burns and Koop
(1987); Easton and Rossin (1991); Jarrah, Bard, and deSilva (1994); Jacobs and
Brusco (1996); and Brusco and Jacobs (1998); among others.

We implement staffing strategies that anticipate absences by adjusting the
expected absenteeism rate parameter used in our model. This parameter helps the
staffing/scheduling model manage the expected effective marginal labor cost versus
marginal revenue trade-off to determine the optimal number of employees and how
they should be deployed over time to maximize expected profit. Our adaptation of
Easton and Goodale’s (2002) staffing and scheduling model uses the following
notation.

Model Parameters
Workforce Characteristics

A = average absenteeism rate (total hours lost due to unexpected absences
-+ total scheduled hours).

F = average employee fringe benefit or per-capita costs.

[ = average service rate per employee.
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Customer and Market Characteristics
T = the number of time periods in planning horizon, indexed
t=1,...,T.
A, = forecasted mean arrival rate for period ¢ (Poisson-
distributed), V 7.
a~! = average customer patience, exponentially distributed.

Ao (Mrs 1, i, @) = effective arrival rate (# arrivals — # reneging) for period
t, given gross arrival rate A,, average service rate u, staff

ing level i, and average patience a~!.

R; = average contribution per completed customer transaction,

before labor costs, fort=1,...,T.

M; = minimum staffing level s such that A.z(A;, u, s, a =
Ar

r; = the incremental revenue generated by the ith employee
working during period , or R [Aepr(Ar, 1,071 — Aopr(As,
w, i — l,a_l)].

Schedule Characteristics

K = the cardinality of the set of allowable work schedules for employees,
a function of the work rules governing the construction of schedules,
indexedk=1,...,K.

ay. = 11if t is a working period in schedule k, O otherwise, fort=1,...,T; k
=1,...,K.

O, = number of scheduled overtime work periods in work schedule k (total
number of work hours in tour — 40 hours).

W = regular wage rate ($/period), with overtime work compensated at rate
1.5W.

Decision Variables and Consequence Variables
X = number of employees assigned to schedule k, where k =1, ... K.

Y, = the fraction of the ith employee who reports for duty during period ¢,
where0 <Y, <1,i=1,...,M;,andt=1,...,T.

The model determines the ideal number of employees, and their schedules,
to maximize expected profits. It accounts for expected revenue, scheduled labor
costs, and the direct and indirect costs of unplanned absenteeism. Mathematically,
the goal is to:

T M,

K T
MaximizeZ = ZZrﬁYﬁ — (Z X; |:F + W (Za,j — 0,-)
j=1 =1

t=1 i=1

+ (1 —A)1.5W0jD, “4)
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subject to:
£ L 5)
(1=A)) auXy—) ¥yi=0, VieT,
k=1 i=1
Xy >0 andinteger, k=1,...,K, (6)
0<Y;<1, i=1,....,.M,, VteT. @)

The objective function (4) computes the expected contribution for the so-
lution by determining expected revenues and expenses. The first term sums the
incremental revenue r,; generated by each employee expected to report for duty
during each period of the planning horizon. The second term computes the ex-
pected labor expenses for the solution. Summing over all feasible tours, it adds the
per-capita expenses and regular wages for all employees scheduled for duty during
the planning horizon, whether or not they report for duty. Although we assume
the wages for scheduled regular time work are guaranteed, the objective excludes
wage payments for the portion of scheduled overtime expected to be lost due to
unplanned absences.

Because the labor staffing/scheduling problem is usually solved one to six
weeks in advance of the service date, managers will not know with certainty whether
everyone scheduled for duty will actually show up. However, the number of sched-
uled employees who are actually present during period ¢ can be modeled as a series
of n = (Zfz | 4 X ) independent Bernoulli trials (Feller, 1968). To illustrate, let
A be the expected absenteeism rate and assume that n employees have been sched-
uled for duty during period ¢. If period ¢ is independent of all other periods, and
each absence is an independent event, the probability that exactly 0 < k < n work-
ers will report for duty during period 7 = py = (})(1 — A)*A"~*. The expected
coverage during period 7 will be >} _, kpx = (1 — A)n, given by the first term of
constraint (5).

The purpose of constraint (5) is to force the summed Y ,; terms, which are used
to compute expected revenue in the objective function, to equal the expected number
of employees who actually report for duty during period ¢. Because the values of r;;
are non-increasing in expected coverage i (i.e., total revenue increases with i, but at
an decreasing rate), this constraint, along with the bounds on Y ; (constraint (7)) and
the direction of the objective function, will force the continuous variables Y;;, i =
0,...,[n(1 — A)], to their upper bounds (i.e., 1). When the expected coverage for
period ¢ is fractional (i.e., Yy n1—ay) = n(1 — A) — [n(1 — A)| > 0), we assume
that the expected marginal revenue produced by the final (fractional) worker is
Y, tn—an X I'en(1-4)]- Like Gans et al. (2003), we assume the number of workers
scheduled for duty is grossed up from the number actually needed by parameter
A, a “shrinkage factor” that reflects average losses to production capacity due to
absenteeism. Finally, we assume that the proportion of absenteeism is the same for
all periods in the planning horizon.

Constraint (6) requires the number of employees assigned to each schedule
to be non-negative integers. Constraint (7) limits the Y,; variables to the interval
0-1, allowing fractional expected coverage for period ¢. The non-increasing nature
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of the marginal revenue function (r,;) and the direction of the optimization ensure
that Y,; > Y11, a characteristic first exploited in the shift-scheduling model by
Goodale, Verma, and Pullman (2003).

Typically, labor schedules are usually developed one to six weeks in advance
of the service date. An optimal solution specifies the profit-maximizing number
of employees assigned to each feasible schedule or tour (represented by X;, for
J=1,...,K feasible tours). Each tour is a T-element binary vector, where a;; =
1 if period ¢ is a duty period for tour j, or 0 otherwise. Assume that employee i
is initially assigned to active tour S; = {ay;, az, - . ., ar;}. Suppose that before the
schedule is implemented, we also construct a set of alternate recovery schedules
S7, to which, as in Hur et al. (2004), the employee agrees to work in the event of a
staffing emergency. Let C’ be the cost for employee i to work schedule S € S.
Note that the cardinality of set S, n;, increases with the short-notice scheduling
flexibility for employee i.

For this study, assume S; includes initial tour S; and all tours that can be
constructed from S; by appending additional work periods (as holdover and/or
call-in overtime) allowed under the applicable absence recovery policy. However,
if responding to demand forecast errors it may also be useful to create recovery
tours with fewer work periods (and lower wage costs) than employee i’s initial
schedule. Finally, for absence recovery policies that allow the use of THS workers,
assume that the set of allowable work schedules S and labor charges C/ for THS
worker schedule 7 € §” have been negotiated with the THS agency. Additional
notation needed to characterize the absence recovery problem is defined in the
following:

Parameters

abs(t,i) = 0 if employee i will be absent during duty period ¢, or 1 other-
wise, fort=1,...,Tandi=1,...,W. Updated absence vectors
materialize a short time before each shift begins.

ay; = 1 if period ¢ is a work period for employee i when assigned to
recovery tour j, fort=1,...,T;i=1,...,W;andj=1,...,nj.
a; = 1 if period ¢ is a work period for THS schedule j, or 0 otherwise.

T = the average proficiency of THS workers; T = 1 implies the same
proficiency as permanent employees.

Decision Variables
Vi = 1 if existing employee j is assigned to recovery tour S; € Sj, or 0
otherwise, forj=1,...,Wandk=1,...,n,
X'/ = number of THS workers assigned to temporary worker schedule
S;,Sjes”.
Y, = the effective fraction of the ith worker who reports for duty during
period £, where 0 <Y, < 1.

The object of the absence recovery problem is to redeploy employees and
appoint THS workers to maximize expected contribution after realizing unplanned
absences, or:
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T M, ni

Maximize Z ZimY,W Z Z VikCiy Z C}’X;’. 8)

t=1 w= i=1 k=1, jes”

Subject to:

Z > Viagabs(t, i)+ 1Y aj X} — Z Yo >0,V1, 9)

i=1 jeS; keS”
0<Yy <1Vt andk=0,..., M,, (10)
D V=1, fori=1,....W, 11
O0<Vyu<l1, i=1,....W, VSkESl-/, (12)
X}/ >0, integer,Vj e S". (13)

Equation (8) computes the contribution to profit following absence recovery.
Summing over all periods and relevant staffing levels, the first sum determines the
total revenue generated by the recovery schedules during each period. The second
and third sums subtract the wage costs after employees are assigned recovery
schedules and the fees for THS workers, respectively. Per-capita costs are not
affected by the recovery decision and, therefore, are excluded from the model.
Constraint (9) sets the upper bound for the sum of the Y; variables to the number
of regular employees who report for duty during period ¢ (i.e., a; x abs(t,i) = 1)
plus the proficiency-adjusted number of THS workers scheduled for duty during
that period. In constraint (10), the Y; variables are limited to values on the interval
0—1, similar to constraint (7).

Constraints (11) and (12) serve as multiple-choice constraints that ensure
exactly one schedule extension from set Sj is selected for employee ;. For recovery
policies that preclude the use of THS workers (i.e., S” = {}), the recovery model can
be implemented as an integer generalized network (Glover, Klingman, & Hultz,
1978). An example of such a network is depicted in Figure 1, which shows the
Y, nodes represent the ith employee equivalent in period ¢. This property ensures
integer values for the V' variables when they are constrained to the interval 0-1, and
makes it possible to solve the absence recovery problem as a linear program. When
S” # {}, constraint (13) ensures non-negative integer values for the number of THS
workers assigned to each feasible THS schedule. Unfortunately, this constraint
changes the model’s mathematical structure to a mixed integer program.

Although we expect the staffing/scheduling model (equations (4)—(7)) will
be used to produce employee schedules once every one to six weeks, the absence
recovery model (equations (8)—(13)) can be applied whenever new absence infor-
mation is received. Shift supervisors need only update the absence vector [abs(t,i)]
for the affected employees and rerun the absence recovery model. Its computational
efficiency makes it an ideal tool for dealing with absence information in real time.
After implementing an absence recovery solution, however, employee schedules
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will also need to be updated to reflect any changes before the recovery model is
next applied.

EXPERIMENTAL DESIGN AND RESULTS

The economic impact of unplanned absences may be mitigated by choosing appro-
priate staffing/scheduling policies and absence recovery measures. Staffing poli-
cies, including those pertaining to absence anticipation and planned overtime, in-
fluence both labor costs and the revenue impact of unplanned absences. Recovery
options (i.e., holdover or call-in overtime, THS workers, or absorbing the absence
with the existing staff) may be constrained by the choice of staffing policies and
may differ in cost and effectiveness. In this section, we describe our experiments to
assess the effectiveness of each combination. Our principal performance measure
is absence cost, or the expected profit before absences are realized minus expected
profit after the absence recovery plan is implemented.

Our experiments simulate the effects of absenteeism on expected profits for
a hypothetical M/M/S/oo +M system experiencing unplanned absences at various
rates (0%, 5%, and 10%). We assume a planning horizon of 7 = 168 consecutive
periods (7 days x 24 hours), with hourly forecasted customer arrival rates A,
(fort=1,...,168) that vary from hour to hour in a sinusoidal pattern. The mean,
amplitude, and frequency of the pattern can be adjusted to represent different service
industries. We assume that employees process transactions at the rate of p/hour per
employee, and that parameter i may be adjusted to reflect different processes. We
also assume that when THS workers are used, they complete transactions at 80%
of the regular service rate u (Campbell, 1999). Lastly, like Andrews and Parsons
(1993) we assume that 80% of all completed service transactions during period ¢
produced revenue = R;; the remaining transactions are informational and produce
no revenue.

We compared staffing and scheduling policies with and without planned
overtime and anticipated absences. The specific factor levels were anticipated ab-
senteeism rates of 0% and 5% and planned overtime of zero hours/week (i.e., no
planned overtime) and planned overtime of up to 20 hours per week. The assumed
absenteeism rates straddle the U.S. service sector’s average, and should differ
enough to reveal possible performance advantages for anticipatory staffing poli-
cies. For scheduled overtime strategies, we designed weekly tours of 40-60 hours
with five consecutive shifts of up to 12 hours per shift. However, shifts longer than
10 hours require a second unpaid one-hour meal break at the start of the overtime
portion of the shift. Standard (40 hours/week) tours provide five consecutive nine-
hour shifts each week, with an unpaid one-hour meal break in the middle of each
shift. The shifts in each tour could begin at any hour of the day, but had to be the
same on each regular workday. Under standard work rules, there are 24 possible
shift-starting times and seven possible days-off pairs, or 168 unique, feasible tours.
With overtime, each shift in a tour can be increased by zero to four hours. With
five shifts per tour, the number of feasible tours increases to 168 x 5% = 525,000
unique feasible tours.

For each staffing/scheduling problem we used a custom C++ program to
create the set of all feasible tours and the marginal revenue matrix r,;. Due to the
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large number of feasible tours, we formulated each staffing/scheduling problem
with a working subset of feasible tours that were selected by Easton and Rossin’s
(1991) column generation procedure. IBM’s (2000) OSL version 3.0 provided the
shadow prices for the column generation algorithm and also solved the final integer
program. We configured OSL to converge to within .25% of theoretical maxima,
which it did within five minutes on a 2.5 GHz workstation.

We next arbitrarily assigned each of the W employees required by the staff
ing/scheduling solution to a specific schedule, then simulated employee absences.
For each employee shift, we randomly (with probability = 0%, 5%, or 10%)
determined if the employee would be absent, assuming the duration of a sim-
ulated absence equals the length of the scheduled work shift. We repeated this
for all scheduled employee shifts, then updated the absence indicators abs(t,i)
for each employee and each period. The results were passed to the absence re-
covery model. We repeated the simulation 30 times for each staffing/scheduling
solution.

We began the recovery phase by computing expected profits with staffing
levels depleted by the simulated absences, reflecting a passive absence recovery
policy. We then evaluated the remaining five active absence recovery policies:
holdover (H), call-in (C), THS workers (T), H + C, and H + C + T. For each
policy, we created a set of allowable absence recovery tours for each employee
(S}) using a custom C++ matrix generator. For holdover overtime, the recovery
tours were created by appending overtime to the end of each existing employee’s
scheduled shift, provided the resulting schedule conformed to the overtime work
rules described above (i.e., <12 hours/shift and <60 hours/week). For the call-in
policy, recovery tours for employee j included all possible four-hour assignments,
separated by at least one rest period, that allow at least 12 hours of rest between
the call-in assignment and the employee’s regular assignments. In addition to con-
fining call-in assignments to scheduled days off, we required them to conform to
the above overtime work rules. Potentially, there could be as many as 121,875 dif-
ferent recovery options to consider for each employee ((up to 4° possible holdover
overtime alternatives) x (up to 39 possible call-in overtime start times)). Typically,
however, only a few of these options were ever needed to cover absence-related
capacity shortages. Finally, we assumed that THS employees worked standard
nine hour/day shifts (eight paid hours plus a one-hour, unpaid meal break) and
were paid 1.4 times the base hourly wage of permanent employees (including the
THS markup). These assumptions allow 168 unique feasible tours for temporary
workers.

For absence recovery problems using either holdover or call-in overtime, the
SAS/OR (SAS Institute Inc, 1999) linear programming procedure provided optimal
schedule assignments in an average of 18 seconds. For absence recovery with THS
workers, the SAS/OR branch-and-bound procedure found integer solutions within
.15% of optimal in an average of 60 CPU seconds (on a 2.3 GHz workstation).

We evaluated the staffing/scheduling and absence recovery combinations in
a variety of hypothetical service environments with factors likely to influence the
impact of absenteeism. The factors and the levels we selected are classified as
either customer or employee factors, and are described in Table 3. In an earlier
study, Easton and Goodale (2002) found that the economic impact of unplanned
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Table 3: Experimental factors and factor levels.

Number of
Experimental Factor Levels Level Values
Employee Characteristics
Average service rate for 2 @ =4 and 16 transactions per hour (.8 p
fully-trained employees for THS workers)
Quasi-fixed cost/employee 2 F = $100/week and $200/week; for THS
workers, daily markup = $32.
Market Characteristics
Daily demand pattern 2 Unimodal and trimodal sinusoidal
patterns, averaging 100 arrivals/hour
Amplitude of demand 2 Coefficient of variation of .25 and .50;
sine function amplitudes of .353 and
706
Unit contribution before 2 R; = $14.40 and $28.80 per order (80%
labor of all arrivals are orders; 20% are
non-revenue producing)
Average customer patience 2 o~! =60 seconds and 240 seconds,
exponentially distributed
Staffing Options
Planned overtime 2 0 hours/week and up to 4 hours/day, 20
hours/week, per employee
Anticipated absence rate 2 A = 0% and 5%
Absence Recovery
Recovery policies 6 Passive, Holdover, Call-in, THS
workers, Holdover + Call-in,
Holdover + Call-in 4+ THS workers.
Simulated absence levels 3 x 30 0%, 5%, and 10%, 30 replications each
Additional Parameters Hourly wage rate = $10/hour regular,
$15/hour overtime, $14/hour for THS
employees.

absenteeism and employee turnover tends to be greater when scheduled workforce
utilization is high. Market factors favoring high server utilization include slim op-
erating margins, greater customer patience, high transaction volumes, and demand
patterns with fewer peaks but greater amplitude. They also found that systems
with many servers and low service rates tend to be quite vulnerable to economic
losses due to absenteeism. In addition to these factors, we believe the effectiveness
of absence recovery may be influenced by per-capita employee expenses. With
higher per-capita costs, firms may be reluctant to adopt anticipatory staffing and
will be more likely to staff with planned overtime. This action is likely to increase
workforce utilization and absence costs. Accordingly, we simulated service envi-
ronments with per-capita expenses of $100 and $200 per employee (25-50% of
the regular weekly wages earned by full-time employees). The former value is
slightly less than the U.S. average. The higher value is likely to favor more planned
overtime and encourage absence recovery options involving overtime or THS
workers.
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A full factorial study, with 64 possible environmental factor combinations
and 24 different staffing/scheduling/recovery policies (1,536 combinations in all),
would allow us to explore all main effects and interactions. However, our main
interest lies with the relative performance of staffing/scheduling and recovery pol-
icy combinations. Using an orthogonal fractional factorial experimental design
(0a8.7.2.2) by Hedayat, Sloane, and Stutken (1999), we were able to reduce the
number of different environmental configurations we simulated for each staffing/
recovery policy from 64 to 8 and still identify the main effects for the environmen-
tal variables. The entire experimental design involved: (four staffing strategies) x
(six recovery policies) x (three simulated absence levels) x (eight environmental
configurations) x (30 replications) = 17,280 test problems.

Results

In Table 4, we examine the average performance of alternate recovery policies
with different staffing strategies. We report the average expected profit with zero
absenteeism for each staffing strategy, the reduction in expected profit after ab-
senteeism is realized (absence cost), and the percent of absence cost recovered
by each recovery policy. In general, passive absence recovery is dominated by all
active recovery policies, regardless of the staffing strategy adopted. Furthermore,
aggressive absence recovery policies (like H + C and H + C + T) recapture on
average about half the profits lost to unplanned absences. All of the absence recov-
ery policies reduced the cost of absenteeism, and they seemed to perform better at
higher simulated absence rates. However, they were not equally effective.

Holdover overtime generally outperforms the other two single-method poli-
cies (except under high absenteeism with staffing strategies that use planned over-
time), because it allows managers to apply precise amounts (increments as small as
one worker-hour) of overtime labor at the most advantageous times. With both call-
in and THS worker assignments, resources must be activated for four to eight hours
to recover from absences, even if only a portion of that time is needed to cover staff
ing shortages. Holdover plus call-in recovery policies generally provide a modest
improvement over holdover absence recovery alone, and even smaller incremental
gains are achieved when all three absence recovery policies are combined.

The rows of Table 4 show the average performance of each staffing strat-
egy at their high and low levels of intensity. THS and call-in recovery performance
appears to be relatively independent of the staffing strategy in use. For holdover ab-
sence recovery, however, significant performance differences are apparent between
the low and high settings for absence anticipation and planned overtime. Analysis
of the data reveals several causes for this behavior. With up to 20 hours of planned
overtime per week, absent workers assigned to overtime schedules left larger holes
in the schedule. In addition, planned overtime staffing strategies consumed a sig-
nificant portion of the firm’s available overtime that would otherwise be available
for absence recovery. Here, available overtime is the difference between the upper
bound on the length of recovery tours (shifts <12 hours and tours <60 hours/
week) and the hours consumed by the original employee schedules. Finally,
planned overtime staffing usually resulted in fewer workers on duty each day,
so there were fewer shifts available for holdover assignments. As a result, it was
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Figure 2: Absence cost by staffing strategy/recovery policy.
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often impossible to cover absences. The latter reason also helps explain the poor
performance of holdover absence recovery with staffing strategies that anticipate
absences. Absence anticipation tends to reduce the workforce size when employees
are indemnified for time lost to illness, because it increases effective hourly wages.

Additional insights emerge when we consider the two staffing strategies
jointly. In Figure 2, we plot average absence costs for four anticipated absence—
planned overtime staffing strategy combinations. In this case, the baseline profit
used to compute absence cost is the highest expected profit achieved for each
operating environment before realizing absenteeism. For convenience, we plot ex-
perimental results for 5% and 10% realized absenteeism on the same chart. The
top-performing staffing/recovery combination in Figure 1, for both 5% and 10%
realized absenteeism (the lower and upper parts of the chart, respectively), are
standard, 40-hour-per-week employee schedules with or without anticipated ab-
senteeism, combined with the most aggressive absence recovery policy (holdover +
call-ins 4+ THS). However, nearly the same performance can be achieved by com-
bining these staffing strategies with holdover overtime alone. As a bonus, the staff
ing and absence recovery models for these combinations are usually easier to solve
because they are integer generalized networks.

Environmental Variables

We next examine the interaction between staffing strategies and various en-
vironmental variables on absence recovery efforts. Before reporting recovery
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performance with the environmental variables at their high and low levels, however,
it is useful to introduce the concept of unscheduled initial service capacity per hour
(slack per hour or slack/hour, the number of employees x service rate x difference
between maximum recovery-mode hours/tour and average scheduled hours/tour,
divided by the number of periods in the planning horizon). Essentially, slack/hour
measures the reserve internal service capacity available to respond to unplanned
absences. Accompanied by appropriate coefficients for the environmental variables
and the operant staffing strategy in use, slack/hour predicted the percentage of ab-
sence costs recovered in our experiments with an adjusted R* of .88 and standard
error of .06. In general, our data show the more slack/hour, the more successful the
recovery with internal resources.

In Table 5a, we show the average percentage of absence costs recovered for
six environmental variables and four staffing strategies, at realized absenteeism
of 5% and 10%, using holdover overtime. Once again, holdover recovery efforts
appear to be less successful with staffing plans that anticipate absenteeism or utilize
planned overtime. This relationship persists for all environmental variables at all
levels considered in this study. However, Table 5a also shows significant differences
in absence recovery between the high and low levels for service rate, per-capita
costs, demand patterns, unit revenue, and customer patience.

Consider first the employee-related experimental factors, which appear to
have strong main effects. Absence recovery efforts were consistently more suc-
cessful in environments with high service rates (1 = 16/hour). At low service rates
(n = 4/hour) gross margins tend to be lower due to higher labor costs per trans-
action. This encourages staffing and scheduling solutions that attain high resource
utilization. In Table 5b, which reports the average initial slack for the staffing
solutions, slack/hour for the low-service-rate solutions were consistently lower;
perhaps dangerously so for staffing strategies that anticipate absenteeism and per-
mit planned overtime. Higher per-capita costs also tend to favor staffing/scheduling
solutions with a smaller workforce, resulting in less slack/hour. However, the op-
portunity to significantly reduce workforce size arises only when planned overtime
is a staffing option. Our staffing model exploited planned overtime for high-per-
capita-cost environments whenever the option was available. When combined with
staffing strategies that allow planned overtime and absence anticipation, high per-
capita costs drove average slack to the lowest point of all the cells in Table 5b, and
also produced the poorest absence recovery record (Table 5a).

The limitations of our orthogonal experimental design become apparent when
we consider absence recovery success with respect to market-related factors. In
general, when customers are more patient, queues can be longer without risking
revenue losses due to reneging. This tends to favor lower staffing levels and reduced
slack/hour. Similarly, lower revenue/transaction reduces margins, making it more
difficult to support a large workforce when demand is finite. Again, this should
yield staffing/scheduling solutions with less slack. We also expected that demand
patterns with high amplitude and more peaks per day would require more employ-
ees, and generally result in greater slack. Table 5b confirms our expectations with
regard to slack/hour (except for tri-modal demand with 0% anticipated absenteeism
and planned overtime). Although in most cases, the general relationship between
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Table Sb: Average slack/hour (unscheduled initial capacity in transactions/hour)
by environmental factor and staffing strategy.

Average Slack (transactions/hour)

A=0% A=5%

Environment Variable Level OoT =0 oT <20 oT =0 oT <20
Service Rate 4 33.8 22.5 294 114
(transactions/hour) 16 52.9 41.1 44.9 26.3
Per-capita Cost $100 44.0 40.0 38.2 32.8

$200 42.6 23.6 36.1 5.0
Demand Pattern Unimodal 42.6 34.6 36.4 17.5

Trimodal 44.1 29.0 37.9 20.3
Demand Amplitude 25 41.2 315 35.7 17.6
(coefficient of variation) .50 45.5 32.2 38.6 20.2
Revenue/Transaction $14.40 41.7 27.0 35.3 15.0

$28.80 45.0 36.7 39.0 22.8
Customer Patience 60 45.5 34.5 38.6 25.5
(seconds) 240 41.2 29.2 35.7 12.3

slack/hour and absence recovery success holds for the different market-related
factors,

Slack/hour is a useful predictor for recovery success with the market-related
factors. Comparing Tables 5a and 5b, firms with tri-modal demand, high demand
amplitude, low revenue/transaction, or high customer patience should avoid staff
ing plans with low slack/hour. However, we were unable to reliably predict rel-
ative absence recovery success for high- and low-market attribute levels if the
difference between the high and low slack/hour values was less than 10%. This
lack of precision may be due to untested interactions between market-related
factors.

CONCLUSIONS

In this study we explored the relationship between staffing strategies and real-
time schedule recovery policies in service organizations that experience unplanned
absenteeism and indemnify their employees for lost time. We defined the total
cost of absenteeism in terms of profit reduction, which considers the impact of
unplanned absences on both revenue and labor expense. Rather than measure or
prevent absenteeism (which we consider inevitable), our goal was to identify robust
staffing, scheduling, and absence recovery practices that allow firms to effectively
recover from absenteeism when it occurs.

We believe that this work provides four significant contributions to the rel-
evant literature. First, we introduce a labor staffing and scheduling model that
formally recognizes absenteeism. Second, we present an absence recovery model
that provides an analytical coping mechanism for short-term absences. Third, we
establish a link between staffing and scheduling policies and the effectiveness of
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alternate absence recovery strategies. Finally, we establish the operating conditions
in which absence recovery approaches such as holdover overtime tend to be more
effective than other methods.

Our study was based on more than 17,000 simulation experiments with dif-
ferent staffing strategies, absence recovery policies, and environmental factors. To
facilitate the comparison of these combinations, we devised a flexible and efficient
absence recovery model. This model, new to the literature, optimizes short-term
schedule adjustment decisions. For recovery policies using only internal resources,
the model is an integer-generalized network—a linear program. Although not at-
tempted in this study, the model could also be used to recover from demand forecast
eITorS.

We found the reduction in total profits due to absenteeism is strongly influ-
enced by the staffing strategies and absence recovery policies that firms adopt to
cope with absenteeism. Forty-hour work weeks and zero anticipated absenteeism
with holdover absence recovery appears to be a fairly robust combination, on av-
erage reclaiming nearly 60% of the profit consumed by unchecked absenteeism.
For firms unwilling or unable to implement active absence recovery policies, how-
ever, planned overtime staffing strategies with absence anticipation appear less
vulnerable to absenteeism.

We devised a measure, unscheduled initial service capacity/hour (slack/hour),
which accurately predicts absence recovery success. Higher values of slack/hour
indicate a greater capability to respond to unplanned absences with internal re-
sources. This measure could serve as a useful risk index for firms attempting to
improve productivity through the use of planned overtime or other staffing strate-
gies that may exacerbate unplanned absenteeism.

Our conclusions may be affected by certain limitations in this study, such
as the long-term consequences of reneging. We assumed that reneging customers
have a short memory and remain in the customer population. If this is not the case,
future arrival rates and revenues may decline. A related limitation concerns the
limited memory of our employees. Some experts believe the use of short-notice
overtime tends to increase absenteeism in future periods. We assumed a constant
rate of absenteeism. Next, our staffing and scheduling model assumes that expected
absences in any given period are the result of a series of independent Bernoulli tri-
als (Feller, 1968). In practice, an absence at time ¢ is likely to persist for several
periods into the future, especially when the duration of each planning interval is
less than a full shift. Put another way, an employee who is absent at the beginning
of his or her shift is likely to remain absent for several consecutive planning inter-
vals. Therefore, the assumption of independence that is implicit for the Bernoulli
trials or capacity cushion approach will usually be violated in most realistic situ-
ations. Another limitation is that we applied our recovery model after simulating
absences for an entire week. In practice, absence information materializes only a
short time—a few hours at best—before the absence occurs. Thus, our approach
may induce a favorable bias to all of our results. Finally, we assumed that employ-
ees maintained the same service rate over time, ignoring possible effects due to
congestions (employees work faster when the queue is large) or fatigue near the
end of a long shift.
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There are also at least three possible avenues for future research in this area.
One is to address other domains. In this study, unplanned absences threatened re-
sponse time and revenue. In the public sector, which tends to experience higher
absenteeism than the private sector, absence costs may be more difficult to measure
and may have public safety as well as economic implications. Second, slack/hour
appears to be an effective way to predict the expected cost of absenteeism when
choosing staffing/scheduling strategies. This work could be extended by estimating
absence costs and exploiting slack/hour to evaluate new staffing proposals with a
single, integrated model. Third, short-term schedule adjustments may be required
for forecast errors as well as unplanned absences. A useful extension would be
to consider both absences and forecast errors simultaneously when developing ro-
bust staffing and scheduling solutions. [Received: January 2004. Accepted: March
2005.]
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