Ajour du GMM régulier

This commit is contained in:
François Pelletier 2014-03-08 01:00:44 -05:00
parent 42b17db119
commit 9cb92e4e50
3 changed files with 207 additions and 12 deletions

View file

@ -46,6 +46,8 @@ alpha.confint <- 0.05
alpha.test <- 0.05
#Chargement des données
RETURNS <- head(read.csv("abbeyn.csv",sep="\t",header=TRUE)[,1],-1)
#Taille de l'échantillon
n <- length(RETURNS)
@
\section{Test de normalité}
@ -60,7 +62,7 @@ EppsPulley.test(RETURNS)
scaledRETURNS <- as.vector(scale(RETURNS))
@
\section{Estimation}
\section{Première estimation par QEE}
<<>>=
## Point de départ
@ -68,14 +70,79 @@ pt.depart <- startparamGAL(scaledRETURNS)
## Fonctions pour les moments
meanQEE <- function(param) mGAL(param,1)
varianceQEE <- function(param) cmGAL(param,2)
sdGEE <- function(param) sqrt(cmGAL(param,2))
skewnessGEE <- function(param) cmGAL(param,3)
kurtosisGEE <- function(param) cmGAL(param,4)
sdQEE <- function(param) sqrt(cmGAL(param,2))
skewnessQEE <- function(param) cmGAL(param,3)
kurtosisQEE <- function(param) cmGAL(param,4)
## Fonctions pour les dérivées
dmeanQEE <- function(param) dmGAL(param,1)
dsdGEE <- function(param) dmGAL(param,2)
dsdQEE <- function(param) dmGAL(param,2)
## Estimation gaussienne
optim1 <- optim(pt.depart,obj.gauss,gr=NULL,scaledRETURNS,meanQEE,varianceQEE,dmeanQEE,dsdGEE)
optim1 <- optim(pt.depart,obj.gauss,gr=NULL,scaledRETURNS,meanQEE,varianceQEE,dmeanQEE,dsdQEE)
pt.optim1 <- optim1$par
## Estimation de crowder
optim2 <- optim(pt.depart,obj.Crowder,gr=NULL,scaledRETURNS,meanQEE,varianceQEE,skewnessQEE,kurtosisQEE,dmeanQEE,dsdQEE)
pt.optim2 <- optim2$par
## Estimation de crowder modifiée
optim3 <- optim(pt.depart,obj.Crowder.Mod,gr=NULL,scaledRETURNS,meanQEE,varianceQEE,dmeanQEE,dsdQEE)
pt.optim3 <- optim3$par
@
\section{Résultats de la première estimation par QEE}
<<>>=
cov.optim1 <- covariance.QEE(M.gauss(pt.optim1,scaledRETURNS,meanQEE,varianceQEE,dmeanQEE,dsdQEE),
V.gauss(pt.optim1,scaledRETURNS,meanQEE,varianceQEE,skewnessQEE,kurtosisQEE,dmeanQEE,dsdQEE),n)
cov.optim2 <- covariance.QEE(M.Crowder(pt.optim2,scaledRETURNS,varianceQEE,skewnessQEE,kurtosisQEE,dmeanQEE,dsdQEE),
V.Crowder(pt.optim2,scaledRETURNS,varianceQEE,skewnessQEE,kurtosisQEE,dmeanQEE,dsdQEE),n)
cov.optim3 <- covariance.QEE(M.Crowder.Mod(pt.optim3,scaledRETURNS,varianceQEE,skewnessQEE,kurtosisQEE,dmeanQEE,dsdQEE),
V.Crowder.Mod(pt.optim3,scaledRETURNS,varianceQEE,dmeanQEE,dsdQEE),n)
confidence.interval.QEE(pt.optim1,cov.optim1,n)
confidence.interval.QEE(pt.optim2,cov.optim2,n)
confidence.interval.QEE(pt.optim3,cov.optim3,n)
@
\section{Seconde estimation par QEE}
<<>>=
## Estimation gaussienne
optim4 <- optim(pt.optim1,obj.gauss,gr=NULL,scaledRETURNS,meanQEE,varianceQEE,dmeanQEE,dsdQEE,
ginv(V.gauss(pt.optim1,scaledRETURNS,meanQEE,varianceQEE,skewnessQEE,kurtosisQEE,dmeanQEE,dsdQEE)))
pt.optim4 <- optim4$par
## Estimation de crowder
optim5 <- optim(pt.optim2,obj.Crowder,gr=NULL,scaledRETURNS,meanQEE,varianceQEE,skewnessQEE,kurtosisQEE,dmeanQEE,dsdQEE,
ginv(V.Crowder(pt.optim2,scaledRETURNS,varianceQEE,skewnessQEE,kurtosisQEE,dmeanQEE,dsdQEE)))
pt.optim5 <- optim5$par
## Estimation de crowder modifiée
optim6 <- optim(pt.optim3,obj.Crowder.Mod,gr=NULL,scaledRETURNS,meanQEE,varianceQEE,dmeanQEE,dsdQEE,
ginv(V.Crowder.Mod(pt.optim3,scaledRETURNS,varianceQEE,dmeanQEE,dsdQEE)))
pt.optim6 <- optim6$par
@
\section{Résultats de la seconde estimation par QEE}
<<>>=
cov.optim4 <- covariance.QEE(M.gauss(pt.optim4,scaledRETURNS,meanQEE,varianceQEE,dmeanQEE,dsdQEE),
V.gauss(pt.optim4,scaledRETURNS,meanQEE,varianceQEE,skewnessQEE,kurtosisQEE,dmeanQEE,dsdQEE),n)
cov.optim5 <- covariance.QEE(M.Crowder(pt.optim5,scaledRETURNS,varianceQEE,skewnessQEE,kurtosisQEE,dmeanQEE,dsdQEE),
V.Crowder(pt.optim5,scaledRETURNS,varianceQEE,skewnessQEE,kurtosisQEE,dmeanQEE,dsdQEE),n)
cov.optim6 <- covariance.QEE(M.Crowder.Mod(pt.optim6,scaledRETURNS,varianceQEE,skewnessQEE,kurtosisQEE,dmeanQEE,dsdQEE),
V.Crowder.Mod(pt.optim6,scaledRETURNS,varianceQEE,dmeanQEE,dsdQEE),n)
confidence.interval.QEE(pt.optim4,cov.optim4,n)
confidence.interval.QEE(pt.optim5,cov.optim5,n)
confidence.interval.QEE(pt.optim6,cov.optim6,n)
@
\section{Estimation par GMM}
<<>>=
## GMM régulier
optim7 <- optim.GMM(pt.depart,conditions.vector=meanvariance.gmm.vector,data=scaledRETURNS,W=diag(2),
meanf=meanQEE,variancef=varianceQEE)
## GMM itératif
optim8 <- iterative.GMM(pt.depart,conditions.vector=meanvariance.gmm.vector,data=scaledRETURNS,W=diag(2),
meanf=meanQEE,variancef=varianceQEE)
@
\end{document}

Binary file not shown.

View file

@ -49,6 +49,8 @@
> alpha.test <- 0.05
> #Chargement des données
> RETURNS <- head(read.csv("abbeyn.csv",sep="\t",header=TRUE)[,1],-1)
> #Taille de l'échantillon
> n <- length(RETURNS)
\end{Sinput}
\end{Schunk}
@ -90,7 +92,7 @@ $Reject
\end{Sinput}
\end{Schunk}
\section{Estimation}
\section{Première estimation par QEE}
\begin{Schunk}
\begin{Sinput}
@ -99,11 +101,137 @@ $Reject
> ## Fonctions pour les moments
> meanQEE <- function(param) mGAL(param,1)
> varianceQEE <- function(param) cmGAL(param,2)
> sdGEE <- function(param) sqrt(cmGAL(param,2))
> skewnessGEE <- function(param) cmGAL(param,3)
> kurtosisGEE <- function(param) cmGAL(param,4)
> sdQEE <- function(param) sqrt(cmGAL(param,2))
> skewnessQEE <- function(param) cmGAL(param,3)
> kurtosisQEE <- function(param) cmGAL(param,4)
> ## Fonctions pour les dérivées
> dmeanQEE <- function(param) dmGAL(param,1)
> dsdGEE <- function(param) dmGAL(param,2)
> dsdQEE <- function(param) dmGAL(param,2)
> ## Estimation gaussienne
> optim1 <- optim(pt.depart,obj.gauss,scaledRETURNS,meanQEE,varianceQEE,dmeanQEE,dsdGEE)
> optim1 <- optim(pt.depart,obj.gauss,gr=NULL,scaledRETURNS,meanQEE,varianceQEE,dmeanQEE,dsdQEE)
> pt.optim1 <- optim1$par
> ## Estimation de crowder
> optim2 <- optim(pt.depart,obj.Crowder,gr=NULL,scaledRETURNS,meanQEE,varianceQEE,skewnessQEE,kurtosisQEE,dmeanQEE,dsdQEE)
> pt.optim2 <- optim2$par
> ## Estimation de crowder modifiée
> optim3 <- optim(pt.depart,obj.Crowder.Mod,gr=NULL,scaledRETURNS,meanQEE,varianceQEE,dmeanQEE,dsdQEE)
> pt.optim3 <- optim3$par
\end{Sinput}
\end{Schunk}
\section{Résultats de la première estimation par QEE}
\begin{Schunk}
\begin{Sinput}
> cov.optim1 <- covariance.QEE(M.gauss(pt.optim1,scaledRETURNS,meanQEE,varianceQEE,dmeanQEE,dsdQEE),
+ V.gauss(pt.optim1,scaledRETURNS,meanQEE,varianceQEE,skewnessQEE,kurtosisQEE,dmeanQEE,dsdQEE),n)
> cov.optim2 <- covariance.QEE(M.Crowder(pt.optim2,scaledRETURNS,varianceQEE,skewnessQEE,kurtosisQEE,dmeanQEE,dsdQEE),
+ V.Crowder(pt.optim2,scaledRETURNS,varianceQEE,skewnessQEE,kurtosisQEE,dmeanQEE,dsdQEE),n)
> cov.optim3 <- covariance.QEE(M.Crowder.Mod(pt.optim3,scaledRETURNS,varianceQEE,skewnessQEE,kurtosisQEE,dmeanQEE,dsdQEE),
+ V.Crowder.Mod(pt.optim3,scaledRETURNS,varianceQEE,dmeanQEE,dsdQEE),n)
> confidence.interval.QEE(pt.optim1,cov.optim1,n)
\end{Sinput}
\begin{Soutput}
LOWER ESTIMATE UPPER
[1,] -0.780018 -0.726048 -0.672077
[2,] 0.436002 0.596316 0.756630
[3,] 0.262650 0.359186 0.455722
[4,] 1.994757 2.021370 2.047982
\end{Soutput}
\begin{Sinput}
> confidence.interval.QEE(pt.optim2,cov.optim2,n)
\end{Sinput}
\begin{Soutput}
LOWER ESTIMATE UPPER
[1,] -0.694457 -0.627404 -0.560351
[2,] 0.413764 0.640292 0.866820
[3,] 0.232650 0.334028 0.435405
[4,] 1.839966 1.878296 1.916626
\end{Soutput}
\begin{Sinput}
> confidence.interval.QEE(pt.optim3,cov.optim3,n)
\end{Sinput}
\begin{Soutput}
LOWER ESTIMATE UPPER
[1,] -0.765288 -0.711439 -0.657589
[2,] 0.455485 0.606642 0.757798
[3,] 0.264669 0.362932 0.461195
[4,] 1.932691 1.960299 1.987906
\end{Soutput}
\end{Schunk}
\section{Seconde estimation par QEE}
\begin{Schunk}
\begin{Sinput}
> ## Estimation gaussienne
> optim4 <- optim(pt.optim1,obj.gauss,gr=NULL,scaledRETURNS,meanQEE,varianceQEE,dmeanQEE,dsdQEE,
+ ginv(V.gauss(pt.optim1,scaledRETURNS,meanQEE,varianceQEE,skewnessQEE,kurtosisQEE,dmeanQEE,dsdQEE)))
> pt.optim4 <- optim4$par
> ## Estimation de crowder
> optim5 <- optim(pt.optim2,obj.Crowder,gr=NULL,scaledRETURNS,meanQEE,varianceQEE,skewnessQEE,kurtosisQEE,dmeanQEE,dsdQEE,
+ ginv(V.Crowder(pt.optim2,scaledRETURNS,varianceQEE,skewnessQEE,kurtosisQEE,dmeanQEE,dsdQEE)))
> pt.optim5 <- optim5$par
> ## Estimation de crowder modifiée
> optim6 <- optim(pt.optim3,obj.Crowder.Mod,gr=NULL,scaledRETURNS,meanQEE,varianceQEE,dmeanQEE,dsdQEE,
+ ginv(V.Crowder.Mod(pt.optim3,scaledRETURNS,varianceQEE,dmeanQEE,dsdQEE)))
> pt.optim6 <- optim6$par
\end{Sinput}
\end{Schunk}
\section{Résultats de la seconde estimation par QEE}
\begin{Schunk}
\begin{Sinput}
> cov.optim4 <- covariance.QEE(M.gauss(pt.optim4,scaledRETURNS,meanQEE,varianceQEE,dmeanQEE,dsdQEE),
+ V.gauss(pt.optim4,scaledRETURNS,meanQEE,varianceQEE,skewnessQEE,kurtosisQEE,dmeanQEE,dsdQEE),n)
> cov.optim5 <- covariance.QEE(M.Crowder(pt.optim5,scaledRETURNS,varianceQEE,skewnessQEE,kurtosisQEE,dmeanQEE,dsdQEE),
+ V.Crowder(pt.optim5,scaledRETURNS,varianceQEE,skewnessQEE,kurtosisQEE,dmeanQEE,dsdQEE),n)
> cov.optim6 <- covariance.QEE(M.Crowder.Mod(pt.optim6,scaledRETURNS,varianceQEE,skewnessQEE,kurtosisQEE,dmeanQEE,dsdQEE),
+ V.Crowder.Mod(pt.optim6,scaledRETURNS,varianceQEE,dmeanQEE,dsdQEE),n)
> confidence.interval.QEE(pt.optim4,cov.optim4,n)
\end{Sinput}
\begin{Soutput}
LOWER ESTIMATE UPPER
[1,] -0.779792 -0.725853 -0.671914
[2,] 0.436017 0.596319 0.756622
[3,] 0.262456 0.358969 0.455482
[4,] 1.995452 2.022048 2.048644
\end{Soutput}
\begin{Sinput}
> confidence.interval.QEE(pt.optim5,cov.optim5,n)
\end{Sinput}
\begin{Soutput}
LOWER ESTIMATE UPPER
[1,] -0.692712 -0.625874 -0.559036
[2,] 0.414139 0.640445 0.866750
[3,] 0.231568 0.332845 0.434122
[4,] 1.842116 1.880376 1.918636
\end{Soutput}
\begin{Sinput}
> confidence.interval.QEE(pt.optim6,cov.optim6,n)
\end{Sinput}
\begin{Soutput}
LOWER ESTIMATE UPPER
[1,] -0.766288 -0.712450 -0.658612
[2,] 0.455051 0.606193 0.757334
[3,] 0.264972 0.363196 0.461419
[4,] 1.934050 1.961614 1.989178
\end{Soutput}
\end{Schunk}
\section{Estimation par GMM}
\begin{Schunk}
\begin{Sinput}
> ## GMM régulier
> optim7 <- optim.GMM(pt.depart,conditions.vector=meanvariance.gmm.vector,data=scaledRETURNS,W=diag(2),
+ meanf=meanQEE,variancef=varianceQEE)
> ## GMM itératif
> optim8 <- iterative.GMM(pt.depart,conditions.vector=meanvariance.gmm.vector,data=scaledRETURNS,W=diag(2),
+ meanf=meanQEE,variancef=varianceQEE)
\end{Sinput}
\end{Schunk}
\end{document}