GAL-Buckle95/GAL-Buckle95.tex
2014-03-08 01:00:44 -05:00

237 lines
7 KiB
TeX

\documentclass{report}
\usepackage{Sweave}
\usepackage{graphicx}
\usepackage[francais]{babel}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{verbatim}
\usepackage{float}
\usepackage{hyperref}
\usepackage{scrtime}
\begin{document}
\input{GAL-Buckle95-concordance}
\title{GAL Buckle 95}
\author{François Pelletier}
\maketitle
\tableofcontents
\section{Chargement des paquets}
\begin{Schunk}
\begin{Sinput}
> setwd("~/git/GAL-Buckle95/")
> library(actuar)
> library(MASS)
> library(xtable)
> library(multicore)
> library(moments)
> library(TTR)
> library(FourierStuff)
> library(GeneralizedAsymmetricLaplace)
> library(GMMStuff)
> library(OptionPricingStuff)
> library(QuadraticEstimatingEquations)
\end{Sinput}
\end{Schunk}
\section{Constantes et données}
\begin{Schunk}
\begin{Sinput}
> #Nombre de décimales affichées
> options(digits=6)
> #Marge pour intervalles de confiance
> alpha.confint <- 0.05
> #Marge pour test d'hypothèses
> alpha.test <- 0.05
> #Chargement des données
> RETURNS <- head(read.csv("abbeyn.csv",sep="\t",header=TRUE)[,1],-1)
> #Taille de l'échantillon
> n <- length(RETURNS)
\end{Sinput}
\end{Schunk}
\section{Test de normalité}
\begin{Schunk}
\begin{Sinput}
> EppsPulley.test(RETURNS)
\end{Sinput}
\begin{Soutput}
Epps-Pulley Normality test
T: 0.626033
T*: 0.635568
p-value: 0.007178
$Tstat
[1] 0.626033
$Tmod
[1] 0.635568
$Zscore
[1] 2.44824
$Pvalue
[1] 0.00717788
$Reject
[1] TRUE
\end{Soutput}
\end{Schunk}
\section{Données mises à l'échelle}
\begin{Schunk}
\begin{Sinput}
> scaledRETURNS <- as.vector(scale(RETURNS))
\end{Sinput}
\end{Schunk}
\section{Première estimation par QEE}
\begin{Schunk}
\begin{Sinput}
> ## Point de départ
> pt.depart <- startparamGAL(scaledRETURNS)
> ## Fonctions pour les moments
> meanQEE <- function(param) mGAL(param,1)
> varianceQEE <- function(param) cmGAL(param,2)
> sdQEE <- function(param) sqrt(cmGAL(param,2))
> skewnessQEE <- function(param) cmGAL(param,3)
> kurtosisQEE <- function(param) cmGAL(param,4)
> ## Fonctions pour les dérivées
> dmeanQEE <- function(param) dmGAL(param,1)
> dsdQEE <- function(param) dmGAL(param,2)
> ## Estimation gaussienne
> optim1 <- optim(pt.depart,obj.gauss,gr=NULL,scaledRETURNS,meanQEE,varianceQEE,dmeanQEE,dsdQEE)
> pt.optim1 <- optim1$par
> ## Estimation de crowder
> optim2 <- optim(pt.depart,obj.Crowder,gr=NULL,scaledRETURNS,meanQEE,varianceQEE,skewnessQEE,kurtosisQEE,dmeanQEE,dsdQEE)
> pt.optim2 <- optim2$par
> ## Estimation de crowder modifiée
> optim3 <- optim(pt.depart,obj.Crowder.Mod,gr=NULL,scaledRETURNS,meanQEE,varianceQEE,dmeanQEE,dsdQEE)
> pt.optim3 <- optim3$par
\end{Sinput}
\end{Schunk}
\section{Résultats de la première estimation par QEE}
\begin{Schunk}
\begin{Sinput}
> cov.optim1 <- covariance.QEE(M.gauss(pt.optim1,scaledRETURNS,meanQEE,varianceQEE,dmeanQEE,dsdQEE),
+ V.gauss(pt.optim1,scaledRETURNS,meanQEE,varianceQEE,skewnessQEE,kurtosisQEE,dmeanQEE,dsdQEE),n)
> cov.optim2 <- covariance.QEE(M.Crowder(pt.optim2,scaledRETURNS,varianceQEE,skewnessQEE,kurtosisQEE,dmeanQEE,dsdQEE),
+ V.Crowder(pt.optim2,scaledRETURNS,varianceQEE,skewnessQEE,kurtosisQEE,dmeanQEE,dsdQEE),n)
> cov.optim3 <- covariance.QEE(M.Crowder.Mod(pt.optim3,scaledRETURNS,varianceQEE,skewnessQEE,kurtosisQEE,dmeanQEE,dsdQEE),
+ V.Crowder.Mod(pt.optim3,scaledRETURNS,varianceQEE,dmeanQEE,dsdQEE),n)
> confidence.interval.QEE(pt.optim1,cov.optim1,n)
\end{Sinput}
\begin{Soutput}
LOWER ESTIMATE UPPER
[1,] -0.780018 -0.726048 -0.672077
[2,] 0.436002 0.596316 0.756630
[3,] 0.262650 0.359186 0.455722
[4,] 1.994757 2.021370 2.047982
\end{Soutput}
\begin{Sinput}
> confidence.interval.QEE(pt.optim2,cov.optim2,n)
\end{Sinput}
\begin{Soutput}
LOWER ESTIMATE UPPER
[1,] -0.694457 -0.627404 -0.560351
[2,] 0.413764 0.640292 0.866820
[3,] 0.232650 0.334028 0.435405
[4,] 1.839966 1.878296 1.916626
\end{Soutput}
\begin{Sinput}
> confidence.interval.QEE(pt.optim3,cov.optim3,n)
\end{Sinput}
\begin{Soutput}
LOWER ESTIMATE UPPER
[1,] -0.765288 -0.711439 -0.657589
[2,] 0.455485 0.606642 0.757798
[3,] 0.264669 0.362932 0.461195
[4,] 1.932691 1.960299 1.987906
\end{Soutput}
\end{Schunk}
\section{Seconde estimation par QEE}
\begin{Schunk}
\begin{Sinput}
> ## Estimation gaussienne
> optim4 <- optim(pt.optim1,obj.gauss,gr=NULL,scaledRETURNS,meanQEE,varianceQEE,dmeanQEE,dsdQEE,
+ ginv(V.gauss(pt.optim1,scaledRETURNS,meanQEE,varianceQEE,skewnessQEE,kurtosisQEE,dmeanQEE,dsdQEE)))
> pt.optim4 <- optim4$par
> ## Estimation de crowder
> optim5 <- optim(pt.optim2,obj.Crowder,gr=NULL,scaledRETURNS,meanQEE,varianceQEE,skewnessQEE,kurtosisQEE,dmeanQEE,dsdQEE,
+ ginv(V.Crowder(pt.optim2,scaledRETURNS,varianceQEE,skewnessQEE,kurtosisQEE,dmeanQEE,dsdQEE)))
> pt.optim5 <- optim5$par
> ## Estimation de crowder modifiée
> optim6 <- optim(pt.optim3,obj.Crowder.Mod,gr=NULL,scaledRETURNS,meanQEE,varianceQEE,dmeanQEE,dsdQEE,
+ ginv(V.Crowder.Mod(pt.optim3,scaledRETURNS,varianceQEE,dmeanQEE,dsdQEE)))
> pt.optim6 <- optim6$par
\end{Sinput}
\end{Schunk}
\section{Résultats de la seconde estimation par QEE}
\begin{Schunk}
\begin{Sinput}
> cov.optim4 <- covariance.QEE(M.gauss(pt.optim4,scaledRETURNS,meanQEE,varianceQEE,dmeanQEE,dsdQEE),
+ V.gauss(pt.optim4,scaledRETURNS,meanQEE,varianceQEE,skewnessQEE,kurtosisQEE,dmeanQEE,dsdQEE),n)
> cov.optim5 <- covariance.QEE(M.Crowder(pt.optim5,scaledRETURNS,varianceQEE,skewnessQEE,kurtosisQEE,dmeanQEE,dsdQEE),
+ V.Crowder(pt.optim5,scaledRETURNS,varianceQEE,skewnessQEE,kurtosisQEE,dmeanQEE,dsdQEE),n)
> cov.optim6 <- covariance.QEE(M.Crowder.Mod(pt.optim6,scaledRETURNS,varianceQEE,skewnessQEE,kurtosisQEE,dmeanQEE,dsdQEE),
+ V.Crowder.Mod(pt.optim6,scaledRETURNS,varianceQEE,dmeanQEE,dsdQEE),n)
> confidence.interval.QEE(pt.optim4,cov.optim4,n)
\end{Sinput}
\begin{Soutput}
LOWER ESTIMATE UPPER
[1,] -0.779792 -0.725853 -0.671914
[2,] 0.436017 0.596319 0.756622
[3,] 0.262456 0.358969 0.455482
[4,] 1.995452 2.022048 2.048644
\end{Soutput}
\begin{Sinput}
> confidence.interval.QEE(pt.optim5,cov.optim5,n)
\end{Sinput}
\begin{Soutput}
LOWER ESTIMATE UPPER
[1,] -0.692712 -0.625874 -0.559036
[2,] 0.414139 0.640445 0.866750
[3,] 0.231568 0.332845 0.434122
[4,] 1.842116 1.880376 1.918636
\end{Soutput}
\begin{Sinput}
> confidence.interval.QEE(pt.optim6,cov.optim6,n)
\end{Sinput}
\begin{Soutput}
LOWER ESTIMATE UPPER
[1,] -0.766288 -0.712450 -0.658612
[2,] 0.455051 0.606193 0.757334
[3,] 0.264972 0.363196 0.461419
[4,] 1.934050 1.961614 1.989178
\end{Soutput}
\end{Schunk}
\section{Estimation par GMM}
\begin{Schunk}
\begin{Sinput}
> ## GMM régulier
> optim7 <- optim.GMM(pt.depart,conditions.vector=meanvariance.gmm.vector,data=scaledRETURNS,W=diag(2),
+ meanf=meanQEE,variancef=varianceQEE)
> ## GMM itératif
> optim8 <- iterative.GMM(pt.depart,conditions.vector=meanvariance.gmm.vector,data=scaledRETURNS,W=diag(2),
+ meanf=meanQEE,variancef=varianceQEE)
\end{Sinput}
\end{Schunk}
\end{document}