presentation-sentometrics/Analyse_BD.Rmd
François Pelletier 120a075b61 mise a jour Rmd
2019-10-08 00:24:15 -04:00

103 lines
No EOL
2.5 KiB
Text

---
title: "Analyse BD"
author: "François Pelletier"
date: "07/10/2019"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
```{r}
library("sentometrics")
library("tidyverse")
library("plotly")
```
```{r}
core_features_corpus.RDS <- readRDS("core_features_corpus.RDS")
top_10_country <- readRDS("top_10_country.RDS")
top_10_sites <- readRDS("top_10_sites.RDS")
corpusSample <- quanteda::corpus_sample(core_features_corpus.RDS, size = 200)
```
# Définition des lexiques
```{r}
data("list_valence_shifters", package = "sentometrics")
data("list_lexicons", package = "sentometrics")
lexIn <- list_lexicons[c("FEEL_en_tr")]
valIn <- list_valence_shifters[["en"]]
l1 <- sento_lexicons(lexIn,valIn)
```
# Calcul des sentiments
```{r}
c_sentiments_sample <- compute_sentiment(x = corpusSample,
lexicons = l1,
how = "counts",
nCore = 8)
c_sentiments_sample
```
```{r}
c_control_compute <- ctr_agg(howWithin = "proportional",
howDocs = "equal_weight",
howTime = "equal_weight",
lag = 7,
by = "day")
c_sentiments <- sento_measures(sento_corpus = core_features_corpus.RDS,
lexicons = l1,
ctr = c_control_compute)
```
```{r}
c_measures <- as.data.table(c_sentiments)
```
```{r}
c_measures_g <- measures_global(c_sentiments)
```
# Sentiment par site
```{r}
c_measures_melt <- c_measures %>%
select(date,starts_with("FEEL_en_tr--site")) %>%
`colnames<-`(c("date",top_10_sites$site)) %>%
melt(id="date",variable.name = "site")
plot_site <- ggplot(data=c_measures_melt,
aes(x=date, y=value, colour=site))+
geom_line()
ggplotly(plot_site)
```
# Sentiment par pays
```{r}
c_measures_melt <- c_measures %>%
select(date,starts_with("FEEL_en_tr--country")) %>%
`colnames<-`(c("date",top_10_country$country)) %>%
melt(id="date",variable.name = "country")
plot_country <- ggplot(data=c_measures_melt,
aes(x=date, y=value, colour=country))+
geom_line()
ggplotly(plot_country)
```
# Sentiment par compteur d'entités
```{r}
c_measures_melt <- c_measures %>%
select(date,starts_with("FEEL_en_tr--entity")) %>%
melt(id="date",variable.name = "entity")
plot_entity <- ggplot(data=c_measures_melt,
aes(x=date, y=value, colour=entity))+
geom_line()
ggplotly(plot_entity)
```