commit initial du projet
This commit is contained in:
parent
740bc3d16f
commit
2eed4f54ec
68 changed files with 145618 additions and 0 deletions
1
GMM-dates.txt
Executable file
1
GMM-dates.txt
Executable file
|
@ -0,0 +1 @@
|
|||
[1] "1990-01-03" "1995-10-18"
|
20
LICENSE
20
LICENSE
|
@ -0,0 +1,20 @@
|
|||
Paternité - Partage des Conditions Initiales à l'Identique 2.5 Canada (CC BY-SA 2.5 CA)
|
||||
|
||||
Vous êtes libres:
|
||||
|
||||
de reproduire, distribuer et communiquer cette création au public
|
||||
de modifier cette création
|
||||
d'utiliser cette création à des fins commerciales
|
||||
Selon les conditions suivantes :
|
||||
|
||||
Paternité — Vous devez citer le nom de l'auteur original.
|
||||
Partage des Conditions Initiales à l'Identique — Si vous modifiez, transformez ou adaptez cette création, vous n'avez le droit de distribuer la création qui en résulte que sous un contrat identique à celui-ci.
|
||||
comprenant bien que :
|
||||
|
||||
Renonciation — N’importe laquelle des conditions ci-dessus peut être levée si vous avez l’autorisation du titulaire de droits.
|
||||
Public Domain — Là où l’œuvre ou un quelconque de ses éléments est dans le domaine public selon le droit applicable, ce statut n’est en aucune façon affecté par la licence.
|
||||
Autres droits — Les droits suivants ne sont en aucune manière affectés par la licence :
|
||||
Vos prérogatives issues des exceptions et limitations aux droits exclusifs ou fair use;
|
||||
Les droits moraux de l’auteur;
|
||||
Droits qu’autrui peut avoir soit sur l’œuvre elle-même soit sur la façon dont elle est utilisée, comme le droit à l’image ou les droits à la vie privée.
|
||||
Remarque — A chaque réutilisation ou distribution, vous devez faire apparaître clairement aux autres les conditions contractuelles de mise à disposition de cette création.
|
1
MLE-dates.tex
Executable file
1
MLE-dates.tex
Executable file
|
@ -0,0 +1 @@
|
|||
[1] "1990-02-13" "1995-10-18"
|
17
MLE-lrtest.tex
Executable file
17
MLE-lrtest.tex
Executable file
|
@ -0,0 +1,17 @@
|
|||
% latex table generated in R 2.13.1 by xtable 1.7-0 package
|
||||
% Wed Mar 28 23:36:14 2012
|
||||
\begin{table}[ht]
|
||||
\begin{center}
|
||||
\begin{tabular}{rrrr}
|
||||
\hline
|
||||
& 1 & 2 & 3 \\
|
||||
\hline
|
||||
1 & 1.00 & 1.00 & 1.00 \\
|
||||
2 & 0.00 & 1.00 & 0.00 \\
|
||||
3 & 0.00 & 1.00 & 1.00 \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\caption{Valeurs critiques}
|
||||
\label{tab:lrtestMLE}
|
||||
\end{center}
|
||||
\end{table}
|
17
MLE-param.tex
Executable file
17
MLE-param.tex
Executable file
|
@ -0,0 +1,17 @@
|
|||
% latex table generated in R 2.13.1 by xtable 1.7-0 package
|
||||
% Thu Apr 12 16:41:04 2012
|
||||
\begin{table}[ht]
|
||||
\begin{center}
|
||||
\begin{tabular}{rlll}
|
||||
\hline
|
||||
& Param & Vasicek & CIR.QL \\
|
||||
\hline
|
||||
1 & alpha & 0.604539835935924 & 0.642262538740856 \\
|
||||
2 & mu & 0.0393379847421409 & 0.0398958894018834 \\
|
||||
3 & sigma & 0.000117483898235261 & 0.00250688987001702 \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\caption{Paramètres estimés par maximum de vraiemblance pour 2 modèles}
|
||||
\label{tab:estimParam}
|
||||
\end{center}
|
||||
\end{table}
|
533
MLE-qqplot-norm.pdf
Executable file
533
MLE-qqplot-norm.pdf
Executable file
|
@ -0,0 +1,533 @@
|
|||
%PDF-1.4
|
||||
%<25>â<EFBFBD>ã<EFBFBD>Ï<EFBFBD>Ó\r
|
||||
1 0 obj
|
||||
<<
|
||||
/CreationDate (D:20120412215251)
|
||||
/ModDate (D:20120412215251)
|
||||
/Title (R Graphics Output)
|
||||
/Producer (R 2.13.1)
|
||||
/Creator (R)
|
||||
>>
|
||||
endobj
|
||||
2 0 obj
|
||||
<<
|
||||
/Type /Catalog
|
||||
/Pages 3 0 R
|
||||
>>
|
||||
endobj
|
||||
7 0 obj
|
||||
<<
|
||||
/Type /Page
|
||||
/Parent 3 0 R
|
||||
/Contents 8 0 R
|
||||
/Resources 4 0 R
|
||||
>>
|
||||
endobj
|
||||
8 0 obj
|
||||
<<
|
||||
/Length 9 0 R
|
||||
>>
|
||||
stream
|
||||
1 J 1 j q
|
||||
Q q 59.04 73.44 414.72 371.52 re W n
|
||||
/sRGB CS 0.000 0.000 0.000 SCN
|
||||
0.75 w
|
||||
[] 0 d
|
||||
1 J
|
||||
1 j
|
||||
10.00 M
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 384.76 367.01 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 237.61 261.29 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 254.95 274.72 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 178.70 227.62 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 246.37 265.77 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 208.91 247.87 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 191.92 238.91 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 71.44 84.60 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 280.50 280.69 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 128.05 165.60 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 219.04 254.69 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 334.95 323.96 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 171.20 223.57 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 214.07 252.77 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 142.11 172.20 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 108.44 89.29 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 312.81 310.31 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 341.32 332.05 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 162.86 209.08 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 276.20 279.84 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 153.35 180.52 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 263.44 274.93 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 203.53 239.98 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 373.53 351.88 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 223.86 255.11 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 197.89 239.98 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 298.33 290.49 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 289.27 290.28 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 323.34 323.32 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 267.68 275.15 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 242.02 264.06 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 303.02 305.63 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 284.85 288.15 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 233.12 257.46 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 418.43 417.73 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 328.99 323.32 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 398.82 389.60 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 355.68 343.35 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 307.84 305.84 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 348.18 336.96 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 455.44 428.60 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 317.97 320.33 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 364.02 344.84 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 271.92 278.77 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 259.20 274.72 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 185.56 228.04 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 293.75 290.28 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 228.55 257.03 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 250.68 270.46 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
Q q
|
||||
/sRGB CS 0.000 0.000 0.000 SCN
|
||||
0.75 w
|
||||
[] 0 d
|
||||
1 J
|
||||
1 j
|
||||
10.00 M
|
||||
100.79 73.44 m 432.01 73.44 l S
|
||||
100.79 73.44 m 100.79 66.24 l S
|
||||
183.60 73.44 m 183.60 66.24 l S
|
||||
266.40 73.44 m 266.40 66.24 l S
|
||||
349.20 73.44 m 349.20 66.24 l S
|
||||
432.01 73.44 m 432.01 66.24 l S
|
||||
BT
|
||||
/sRGB cs 0.000 0.000 0.000 scn
|
||||
/F2 1 Tf 12.00 0.00 -0.00 12.00 93.95 47.52 Tm (-2) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 12.00 0.00 -0.00 12.00 176.76 47.52 Tm (-1) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 12.00 0.00 -0.00 12.00 263.06 47.52 Tm (0) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 12.00 0.00 -0.00 12.00 345.87 47.52 Tm (1) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 12.00 0.00 -0.00 12.00 428.67 47.52 Tm (2) Tj
|
||||
ET
|
||||
59.04 75.48 m 59.04 395.18 l S
|
||||
59.04 75.48 m 51.84 75.48 l S
|
||||
59.04 182.05 m 51.84 182.05 l S
|
||||
59.04 288.61 m 51.84 288.61 l S
|
||||
59.04 395.18 m 51.84 395.18 l S
|
||||
BT
|
||||
/F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 56.96 Tm (-0.010) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 163.53 Tm (-0.005) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 273.60 Tm (0.000) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 380.17 Tm (0.005) Tj
|
||||
ET
|
||||
59.04 73.44 m
|
||||
473.76 73.44 l
|
||||
473.76 444.96 l
|
||||
59.04 444.96 l
|
||||
59.04 73.44 l
|
||||
S
|
||||
Q q
|
||||
BT
|
||||
/sRGB cs 0.000 0.000 0.000 scn
|
||||
/F3 1 Tf 14.00 0.00 -0.00 14.00 210.19 469.45 Tm (Normal Q-Q Plot) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 12.00 0.00 -0.00 12.00 209.71 18.72 Tm (Theoretical Quantiles) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 0.00 12.00 -12.00 0.00 12.96 211.85 Tm (Sample Quantiles) Tj
|
||||
ET
|
||||
Q
|
||||
endstream
|
||||
endobj
|
||||
9 0 obj
|
||||
4550
|
||||
endobj
|
||||
3 0 obj
|
||||
<<
|
||||
/Type /Pages
|
||||
/Kids [
|
||||
7 0 R
|
||||
]
|
||||
/Count 1
|
||||
/MediaBox [0 0 504 504]
|
||||
>>
|
||||
endobj
|
||||
4 0 obj
|
||||
<<
|
||||
/ProcSet [/PDF /Text]
|
||||
/Font << /F1 11 0 R /F2 12 0 R /F3 13 0 R >>
|
||||
/ExtGState << >>
|
||||
/ColorSpace << /sRGB 5 0 R >>
|
||||
>>
|
||||
endobj
|
||||
5 0 obj
|
||||
[/ICCBased 6 0 R]
|
||||
endobj
|
||||
6 0 obj
|
||||
<< /N 3 /Alternate /DeviceRGB /Length 9433 /Filter /ASCIIHexDecode >>
|
||||
stream
|
||||
00 00 0c 48 4c 69 6e 6f 02 10 00 00 6d 6e 74 72
|
||||
52 47 42 20 58 59 5a 20 07 ce 00 02 00 09 00 06
|
||||
00 31 00 00 61 63 73 70 4d 53 46 54 00 00 00 00
|
||||
49 45 43 20 73 52 47 42 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 f6 d6 00 01 00 00 00 00 d3 2d
|
||||
48 50 20 20 00 00 00 00 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
|
||||
00 00 00 11 63 70 72 74 00 00 01 50 00 00 00 33
|
||||
64 65 73 63 00 00 01 84 00 00 00 6c 77 74 70 74
|
||||
00 00 01 f0 00 00 00 14 62 6b 70 74 00 00 02 04
|
||||
00 00 00 14 72 58 59 5a 00 00 02 18 00 00 00 14
|
||||
67 58 59 5a 00 00 02 2c 00 00 00 14 62 58 59 5a
|
||||
00 00 02 40 00 00 00 14 64 6d 6e 64 00 00 02 54
|
||||
00 00 00 70 64 6d 64 64 00 00 02 c4 00 00 00 88
|
||||
76 75 65 64 00 00 03 4c 00 00 00 86 76 69 65 77
|
||||
00 00 03 d4 00 00 00 24 6c 75 6d 69 00 00 03 f8
|
||||
00 00 00 14 6d 65 61 73 00 00 04 0c 00 00 00 24
|
||||
74 65 63 68 00 00 04 30 00 00 00 0c 72 54 52 43
|
||||
00 00 04 3c 00 00 08 0c 67 54 52 43 00 00 04 3c
|
||||
00 00 08 0c 62 54 52 43 00 00 04 3c 00 00 08 0c
|
||||
74 65 78 74 00 00 00 00 43 6f 70 79 72 69 67 68
|
||||
74 20 28 63 29 20 31 39 39 38 20 48 65 77 6c 65
|
||||
74 74 2d 50 61 63 6b 61 72 64 20 43 6f 6d 70 61
|
||||
6e 79 00 00 64 65 73 63 00 00 00 00 00 00 00 12
|
||||
73 52 47 42 20 49 45 43 36 31 39 36 36 2d 32 2e
|
||||
31 00 00 00 00 00 00 00 00 00 00 00 12 73 52 47
|
||||
42 20 49 45 43 36 31 39 36 36 2d 32 2e 31 00 00
|
||||
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
|
||||
58 59 5a 20 00 00 00 00 00 00 f3 51 00 01 00 00
|
||||
00 01 16 cc 58 59 5a 20 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 00 00 58 59 5a 20 00 00 00 00
|
||||
00 00 6f a2 00 00 38 f5 00 00 03 90 58 59 5a 20
|
||||
00 00 00 00 00 00 62 99 00 00 b7 85 00 00 18 da
|
||||
58 59 5a 20 00 00 00 00 00 00 24 a0 00 00 0f 84
|
||||
00 00 b6 cf 64 65 73 63 00 00 00 00 00 00 00 16
|
||||
49 45 43 20 68 74 74 70 3a 2f 2f 77 77 77 2e 69
|
||||
65 63 2e 63 68 00 00 00 00 00 00 00 00 00 00 00
|
||||
16 49 45 43 20 68 74 74 70 3a 2f 2f 77 77 77 2e
|
||||
69 65 63 2e 63 68 00 00 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 64 65 73 63 00 00 00 00 00 00 00 2e
|
||||
49 45 43 20 36 31 39 36 36 2d 32 2e 31 20 44 65
|
||||
66 61 75 6c 74 20 52 47 42 20 63 6f 6c 6f 75 72
|
||||
20 73 70 61 63 65 20 2d 20 73 52 47 42 00 00 00
|
||||
00 00 00 00 00 00 00 00 2e 49 45 43 20 36 31 39
|
||||
36 36 2d 32 2e 31 20 44 65 66 61 75 6c 74 20 52
|
||||
47 42 20 63 6f 6c 6f 75 72 20 73 70 61 63 65 20
|
||||
2d 20 73 52 47 42 00 00 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 00 00 00 00 00 00 64 65 73 63
|
||||
00 00 00 00 00 00 00 2c 52 65 66 65 72 65 6e 63
|
||||
65 20 56 69 65 77 69 6e 67 20 43 6f 6e 64 69 74
|
||||
69 6f 6e 20 69 6e 20 49 45 43 36 31 39 36 36 2d
|
||||
32 2e 31 00 00 00 00 00 00 00 00 00 00 00 2c 52
|
||||
65 66 65 72 65 6e 63 65 20 56 69 65 77 69 6e 67
|
||||
20 43 6f 6e 64 69 74 69 6f 6e 20 69 6e 20 49 45
|
||||
43 36 31 39 36 36 2d 32 2e 31 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 76 69 65 77 00 00 00 00 00 13 a4 fe
|
||||
00 14 5f 2e 00 10 cf 14 00 03 ed cc 00 04 13 0b
|
||||
00 03 5c 9e 00 00 00 01 58 59 5a 20 00 00 00 00
|
||||
00 4c 09 56 00 50 00 00 00 57 1f e7 6d 65 61 73
|
||||
00 00 00 00 00 00 00 01 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 00 00 00 00 02 8f 00 00 00 02
|
||||
73 69 67 20 00 00 00 00 43 52 54 20 63 75 72 76
|
||||
00 00 00 00 00 00 04 00 00 00 00 05 00 0a 00 0f
|
||||
00 14 00 19 00 1e 00 23 00 28 00 2d 00 32 00 37
|
||||
00 3b 00 40 00 45 00 4a 00 4f 00 54 00 59 00 5e
|
||||
00 63 00 68 00 6d 00 72 00 77 00 7c 00 81 00 86
|
||||
00 8b 00 90 00 95 00 9a 00 9f 00 a4 00 a9 00 ae
|
||||
00 b2 00 b7 00 bc 00 c1 00 c6 00 cb 00 d0 00 d5
|
||||
00 db 00 e0 00 e5 00 eb 00 f0 00 f6 00 fb 01 01
|
||||
01 07 01 0d 01 13 01 19 01 1f 01 25 01 2b 01 32
|
||||
01 38 01 3e 01 45 01 4c 01 52 01 59 01 60 01 67
|
||||
01 6e 01 75 01 7c 01 83 01 8b 01 92 01 9a 01 a1
|
||||
01 a9 01 b1 01 b9 01 c1 01 c9 01 d1 01 d9 01 e1
|
||||
01 e9 01 f2 01 fa 02 03 02 0c 02 14 02 1d 02 26
|
||||
02 2f 02 38 02 41 02 4b 02 54 02 5d 02 67 02 71
|
||||
02 7a 02 84 02 8e 02 98 02 a2 02 ac 02 b6 02 c1
|
||||
02 cb 02 d5 02 e0 02 eb 02 f5 03 00 03 0b 03 16
|
||||
03 21 03 2d 03 38 03 43 03 4f 03 5a 03 66 03 72
|
||||
03 7e 03 8a 03 96 03 a2 03 ae 03 ba 03 c7 03 d3
|
||||
03 e0 03 ec 03 f9 04 06 04 13 04 20 04 2d 04 3b
|
||||
04 48 04 55 04 63 04 71 04 7e 04 8c 04 9a 04 a8
|
||||
04 b6 04 c4 04 d3 04 e1 04 f0 04 fe 05 0d 05 1c
|
||||
05 2b 05 3a 05 49 05 58 05 67 05 77 05 86 05 96
|
||||
05 a6 05 b5 05 c5 05 d5 05 e5 05 f6 06 06 06 16
|
||||
06 27 06 37 06 48 06 59 06 6a 06 7b 06 8c 06 9d
|
||||
06 af 06 c0 06 d1 06 e3 06 f5 07 07 07 19 07 2b
|
||||
07 3d 07 4f 07 61 07 74 07 86 07 99 07 ac 07 bf
|
||||
07 d2 07 e5 07 f8 08 0b 08 1f 08 32 08 46 08 5a
|
||||
08 6e 08 82 08 96 08 aa 08 be 08 d2 08 e7 08 fb
|
||||
09 10 09 25 09 3a 09 4f 09 64 09 79 09 8f 09 a4
|
||||
09 ba 09 cf 09 e5 09 fb 0a 11 0a 27 0a 3d 0a 54
|
||||
0a 6a 0a 81 0a 98 0a ae 0a c5 0a dc 0a f3 0b 0b
|
||||
0b 22 0b 39 0b 51 0b 69 0b 80 0b 98 0b b0 0b c8
|
||||
0b e1 0b f9 0c 12 0c 2a 0c 43 0c 5c 0c 75 0c 8e
|
||||
0c a7 0c c0 0c d9 0c f3 0d 0d 0d 26 0d 40 0d 5a
|
||||
0d 74 0d 8e 0d a9 0d c3 0d de 0d f8 0e 13 0e 2e
|
||||
0e 49 0e 64 0e 7f 0e 9b 0e b6 0e d2 0e ee 0f 09
|
||||
0f 25 0f 41 0f 5e 0f 7a 0f 96 0f b3 0f cf 0f ec
|
||||
10 09 10 26 10 43 10 61 10 7e 10 9b 10 b9 10 d7
|
||||
10 f5 11 13 11 31 11 4f 11 6d 11 8c 11 aa 11 c9
|
||||
11 e8 12 07 12 26 12 45 12 64 12 84 12 a3 12 c3
|
||||
12 e3 13 03 13 23 13 43 13 63 13 83 13 a4 13 c5
|
||||
13 e5 14 06 14 27 14 49 14 6a 14 8b 14 ad 14 ce
|
||||
14 f0 15 12 15 34 15 56 15 78 15 9b 15 bd 15 e0
|
||||
16 03 16 26 16 49 16 6c 16 8f 16 b2 16 d6 16 fa
|
||||
17 1d 17 41 17 65 17 89 17 ae 17 d2 17 f7 18 1b
|
||||
18 40 18 65 18 8a 18 af 18 d5 18 fa 19 20 19 45
|
||||
19 6b 19 91 19 b7 19 dd 1a 04 1a 2a 1a 51 1a 77
|
||||
1a 9e 1a c5 1a ec 1b 14 1b 3b 1b 63 1b 8a 1b b2
|
||||
1b da 1c 02 1c 2a 1c 52 1c 7b 1c a3 1c cc 1c f5
|
||||
1d 1e 1d 47 1d 70 1d 99 1d c3 1d ec 1e 16 1e 40
|
||||
1e 6a 1e 94 1e be 1e e9 1f 13 1f 3e 1f 69 1f 94
|
||||
1f bf 1f ea 20 15 20 41 20 6c 20 98 20 c4 20 f0
|
||||
21 1c 21 48 21 75 21 a1 21 ce 21 fb 22 27 22 55
|
||||
22 82 22 af 22 dd 23 0a 23 38 23 66 23 94 23 c2
|
||||
23 f0 24 1f 24 4d 24 7c 24 ab 24 da 25 09 25 38
|
||||
25 68 25 97 25 c7 25 f7 26 27 26 57 26 87 26 b7
|
||||
26 e8 27 18 27 49 27 7a 27 ab 27 dc 28 0d 28 3f
|
||||
28 71 28 a2 28 d4 29 06 29 38 29 6b 29 9d 29 d0
|
||||
2a 02 2a 35 2a 68 2a 9b 2a cf 2b 02 2b 36 2b 69
|
||||
2b 9d 2b d1 2c 05 2c 39 2c 6e 2c a2 2c d7 2d 0c
|
||||
2d 41 2d 76 2d ab 2d e1 2e 16 2e 4c 2e 82 2e b7
|
||||
2e ee 2f 24 2f 5a 2f 91 2f c7 2f fe 30 35 30 6c
|
||||
30 a4 30 db 31 12 31 4a 31 82 31 ba 31 f2 32 2a
|
||||
32 63 32 9b 32 d4 33 0d 33 46 33 7f 33 b8 33 f1
|
||||
34 2b 34 65 34 9e 34 d8 35 13 35 4d 35 87 35 c2
|
||||
35 fd 36 37 36 72 36 ae 36 e9 37 24 37 60 37 9c
|
||||
37 d7 38 14 38 50 38 8c 38 c8 39 05 39 42 39 7f
|
||||
39 bc 39 f9 3a 36 3a 74 3a b2 3a ef 3b 2d 3b 6b
|
||||
3b aa 3b e8 3c 27 3c 65 3c a4 3c e3 3d 22 3d 61
|
||||
3d a1 3d e0 3e 20 3e 60 3e a0 3e e0 3f 21 3f 61
|
||||
3f a2 3f e2 40 23 40 64 40 a6 40 e7 41 29 41 6a
|
||||
41 ac 41 ee 42 30 42 72 42 b5 42 f7 43 3a 43 7d
|
||||
43 c0 44 03 44 47 44 8a 44 ce 45 12 45 55 45 9a
|
||||
45 de 46 22 46 67 46 ab 46 f0 47 35 47 7b 47 c0
|
||||
48 05 48 4b 48 91 48 d7 49 1d 49 63 49 a9 49 f0
|
||||
4a 37 4a 7d 4a c4 4b 0c 4b 53 4b 9a 4b e2 4c 2a
|
||||
4c 72 4c ba 4d 02 4d 4a 4d 93 4d dc 4e 25 4e 6e
|
||||
4e b7 4f 00 4f 49 4f 93 4f dd 50 27 50 71 50 bb
|
||||
51 06 51 50 51 9b 51 e6 52 31 52 7c 52 c7 53 13
|
||||
53 5f 53 aa 53 f6 54 42 54 8f 54 db 55 28 55 75
|
||||
55 c2 56 0f 56 5c 56 a9 56 f7 57 44 57 92 57 e0
|
||||
58 2f 58 7d 58 cb 59 1a 59 69 59 b8 5a 07 5a 56
|
||||
5a a6 5a f5 5b 45 5b 95 5b e5 5c 35 5c 86 5c d6
|
||||
5d 27 5d 78 5d c9 5e 1a 5e 6c 5e bd 5f 0f 5f 61
|
||||
5f b3 60 05 60 57 60 aa 60 fc 61 4f 61 a2 61 f5
|
||||
62 49 62 9c 62 f0 63 43 63 97 63 eb 64 40 64 94
|
||||
64 e9 65 3d 65 92 65 e7 66 3d 66 92 66 e8 67 3d
|
||||
67 93 67 e9 68 3f 68 96 68 ec 69 43 69 9a 69 f1
|
||||
6a 48 6a 9f 6a f7 6b 4f 6b a7 6b ff 6c 57 6c af
|
||||
6d 08 6d 60 6d b9 6e 12 6e 6b 6e c4 6f 1e 6f 78
|
||||
6f d1 70 2b 70 86 70 e0 71 3a 71 95 71 f0 72 4b
|
||||
72 a6 73 01 73 5d 73 b8 74 14 74 70 74 cc 75 28
|
||||
75 85 75 e1 76 3e 76 9b 76 f8 77 56 77 b3 78 11
|
||||
78 6e 78 cc 79 2a 79 89 79 e7 7a 46 7a a5 7b 04
|
||||
7b 63 7b c2 7c 21 7c 81 7c e1 7d 41 7d a1 7e 01
|
||||
7e 62 7e c2 7f 23 7f 84 7f e5 80 47 80 a8 81 0a
|
||||
81 6b 81 cd 82 30 82 92 82 f4 83 57 83 ba 84 1d
|
||||
84 80 84 e3 85 47 85 ab 86 0e 86 72 86 d7 87 3b
|
||||
87 9f 88 04 88 69 88 ce 89 33 89 99 89 fe 8a 64
|
||||
8a ca 8b 30 8b 96 8b fc 8c 63 8c ca 8d 31 8d 98
|
||||
8d ff 8e 66 8e ce 8f 36 8f 9e 90 06 90 6e 90 d6
|
||||
91 3f 91 a8 92 11 92 7a 92 e3 93 4d 93 b6 94 20
|
||||
94 8a 94 f4 95 5f 95 c9 96 34 96 9f 97 0a 97 75
|
||||
97 e0 98 4c 98 b8 99 24 99 90 99 fc 9a 68 9a d5
|
||||
9b 42 9b af 9c 1c 9c 89 9c f7 9d 64 9d d2 9e 40
|
||||
9e ae 9f 1d 9f 8b 9f fa a0 69 a0 d8 a1 47 a1 b6
|
||||
a2 26 a2 96 a3 06 a3 76 a3 e6 a4 56 a4 c7 a5 38
|
||||
a5 a9 a6 1a a6 8b a6 fd a7 6e a7 e0 a8 52 a8 c4
|
||||
a9 37 a9 a9 aa 1c aa 8f ab 02 ab 75 ab e9 ac 5c
|
||||
ac d0 ad 44 ad b8 ae 2d ae a1 af 16 af 8b b0 00
|
||||
b0 75 b0 ea b1 60 b1 d6 b2 4b b2 c2 b3 38 b3 ae
|
||||
b4 25 b4 9c b5 13 b5 8a b6 01 b6 79 b6 f0 b7 68
|
||||
b7 e0 b8 59 b8 d1 b9 4a b9 c2 ba 3b ba b5 bb 2e
|
||||
bb a7 bc 21 bc 9b bd 15 bd 8f be 0a be 84 be ff
|
||||
bf 7a bf f5 c0 70 c0 ec c1 67 c1 e3 c2 5f c2 db
|
||||
c3 58 c3 d4 c4 51 c4 ce c5 4b c5 c8 c6 46 c6 c3
|
||||
c7 41 c7 bf c8 3d c8 bc c9 3a c9 b9 ca 38 ca b7
|
||||
cb 36 cb b6 cc 35 cc b5 cd 35 cd b5 ce 36 ce b6
|
||||
cf 37 cf b8 d0 39 d0 ba d1 3c d1 be d2 3f d2 c1
|
||||
d3 44 d3 c6 d4 49 d4 cb d5 4e d5 d1 d6 55 d6 d8
|
||||
d7 5c d7 e0 d8 64 d8 e8 d9 6c d9 f1 da 76 da fb
|
||||
db 80 dc 05 dc 8a dd 10 dd 96 de 1c de a2 df 29
|
||||
df af e0 36 e0 bd e1 44 e1 cc e2 53 e2 db e3 63
|
||||
e3 eb e4 73 e4 fc e5 84 e6 0d e6 96 e7 1f e7 a9
|
||||
e8 32 e8 bc e9 46 e9 d0 ea 5b ea e5 eb 70 eb fb
|
||||
ec 86 ed 11 ed 9c ee 28 ee b4 ef 40 ef cc f0 58
|
||||
f0 e5 f1 72 f1 ff f2 8c f3 19 f3 a7 f4 34 f4 c2
|
||||
f5 50 f5 de f6 6d f6 fb f7 8a f8 19 f8 a8 f9 38
|
||||
f9 c7 fa 57 fa e7 fb 77 fc 07 fc 98 fd 29 fd ba
|
||||
fe 4b fe dc ff 6d ff ff >
|
||||
endstream
|
||||
endobj
|
||||
10 0 obj
|
||||
<<
|
||||
/Type /Encoding
|
||||
/BaseEncoding /WinAnsiEncoding
|
||||
/Differences [ 45/minus 96/quoteleft
|
||||
144/dotlessi /grave /acute /circumflex /tilde /macron /breve /dotaccent
|
||||
/dieresis /.notdef /ring /cedilla /.notdef /hungarumlaut /ogonek /caron /space]
|
||||
>>
|
||||
endobj
|
||||
11 0 obj
|
||||
<<
|
||||
/Type /Font
|
||||
/Subtype /Type1
|
||||
/Name /F1
|
||||
/BaseFont /ZapfDingbats
|
||||
>>
|
||||
endobj
|
||||
12 0 obj <<
|
||||
/Type /Font
|
||||
/Subtype /Type1
|
||||
/Name /F2
|
||||
/BaseFont /Helvetica
|
||||
/Encoding 10 0 R
|
||||
>> endobj
|
||||
13 0 obj <<
|
||||
/Type /Font
|
||||
/Subtype /Type1
|
||||
/Name /F3
|
||||
/BaseFont /Helvetica-Bold
|
||||
/Encoding 10 0 R
|
||||
>> endobj
|
||||
xref
|
||||
0 14
|
||||
0000000000 65535 f
|
||||
0000000021 00000 n
|
||||
0000000164 00000 n
|
||||
0000004915 00000 n
|
||||
0000004998 00000 n
|
||||
0000005133 00000 n
|
||||
0000005166 00000 n
|
||||
0000000213 00000 n
|
||||
0000000293 00000 n
|
||||
0000004895 00000 n
|
||||
0000014702 00000 n
|
||||
0000014960 00000 n
|
||||
0000015044 00000 n
|
||||
0000015142 00000 n
|
||||
trailer
|
||||
<<
|
||||
/Size 14
|
||||
/Info 1 0 R
|
||||
/Root 2 0 R
|
||||
>>
|
||||
startxref
|
||||
15245
|
||||
%%EOF
|
98
MMGestimation.tex
Executable file
98
MMGestimation.tex
Executable file
|
@ -0,0 +1,98 @@
|
|||
% latex table generated in R 2.13.1 by xtable 1.7-0 package
|
||||
% Thu Apr 12 16:41:03 2012
|
||||
\begin{table}[ht]
|
||||
\begin{center}
|
||||
\begin{tabular}{rrrr}
|
||||
\hline
|
||||
& Est. param. & T-Stat & p-value \\
|
||||
\hline
|
||||
a & 0.02320 & 22.30001 & 0.00000 \\
|
||||
b & -0.58973 & 14.27554 & 0.00000 \\
|
||||
sigma & 0.03416 & 72953440.38807 & 0.00000 \\
|
||||
gamma & 0.96593 & 372870417.22069 & 0.00000 \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\caption{Modèle CKLS estimé avec GMM}
|
||||
\end{center}
|
||||
\end{table}
|
||||
% latex table generated in R 2.13.1 by xtable 1.7-0 package
|
||||
% Thu Apr 12 16:41:03 2012
|
||||
\begin{table}[ht]
|
||||
\begin{center}
|
||||
\begin{tabular}{rrrr}
|
||||
\hline
|
||||
& Est. param. & T-Stat & p-value \\
|
||||
\hline
|
||||
a & 0.02320 & 21.94401 & 0.00000 \\
|
||||
b & -0.58973 & 1.59672 & 0.05859 \\
|
||||
sigma & 0.00011 & 10.98051 & 0.00000 \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\caption{Modèle Vasicek estimé avec GMM}
|
||||
\end{center}
|
||||
\end{table}
|
||||
% latex table generated in R 2.13.1 by xtable 1.7-0 package
|
||||
% Thu Apr 12 16:41:03 2012
|
||||
\begin{table}[ht]
|
||||
\begin{center}
|
||||
\begin{tabular}{rrrr}
|
||||
\hline
|
||||
& Est. param. & T-Stat & p-value \\
|
||||
\hline
|
||||
a & 0.02320 & 22.28222 & 0.00000 \\
|
||||
b & -0.58973 & 1.62643 & 0.05535 \\
|
||||
sigma & 0.00227 & 2.39356 & 0.01041 \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\caption{Modèle CIR estimé avec GMM}
|
||||
\end{center}
|
||||
\end{table}
|
||||
% latex table generated in R 2.13.1 by xtable 1.7-0 package
|
||||
% Thu Apr 12 16:41:03 2012
|
||||
\begin{table}[ht]
|
||||
\begin{center}
|
||||
\begin{tabular}{rrrrr}
|
||||
\hline
|
||||
& a & b & sigma & gamma \\
|
||||
\hline
|
||||
a & 0.00010 & -0.00138 & 0.00007 & -0.00001 \\
|
||||
b & -0.00138 & 0.02636 & -0.00267 & 0.00052 \\
|
||||
sigma & 0.00007 & -0.00267 & 0.00402 & -0.00079 \\
|
||||
gamma & -0.00001 & 0.00052 & -0.00079 & 0.00015 \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\caption{Matrice de Var-Cov des par. pour modèle CKLS avec GMM}
|
||||
\end{center}
|
||||
\end{table}
|
||||
% latex table generated in R 2.13.1 by xtable 1.7-0 package
|
||||
% Thu Apr 12 16:41:03 2012
|
||||
\begin{table}[ht]
|
||||
\begin{center}
|
||||
\begin{tabular}{rrrr}
|
||||
\hline
|
||||
& a & b & sigma \\
|
||||
\hline
|
||||
a & 0.00010 & -0.00138 & 0.00000 \\
|
||||
b & -0.00138 & 0.02636 & -0.00001 \\
|
||||
sigma & 0.00000 & -0.00001 & 0.00000 \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\caption{Matrice de Var-Cov des par. pour modèle Vasicek avec GMM}
|
||||
\end{center}
|
||||
\end{table}
|
||||
% latex table generated in R 2.13.1 by xtable 1.7-0 package
|
||||
% Thu Apr 12 16:41:03 2012
|
||||
\begin{table}[ht]
|
||||
\begin{center}
|
||||
\begin{tabular}{rrrr}
|
||||
\hline
|
||||
& a & b & sigma \\
|
||||
\hline
|
||||
a & 0.00010 & -0.00138 & 0.00000 \\
|
||||
b & -0.00138 & 0.02636 & -0.00018 \\
|
||||
sigma & 0.00000 & -0.00018 & 0.00001 \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\caption{Matrice de Var-Cov des par. pour modèle CIR avec GMM}
|
||||
\end{center}
|
||||
\end{table}
|
21
MMGestimationModeleCIR.txt
Executable file
21
MMGestimationModeleCIR.txt
Executable file
|
@ -0,0 +1,21 @@
|
|||
$Tstat
|
||||
[1] 22.282218 1.626430 2.393561
|
||||
|
||||
$Tpvalue
|
||||
[1] 0.00000000 0.05534513 0.01041074
|
||||
|
||||
$Varparam
|
||||
[,1] [,2] [,3]
|
||||
[1,] 1.007635e-04 -0.0013847124 4.042707e-06
|
||||
[2,] -1.384712e-03 0.0263571897 -1.769347e-04
|
||||
[3,] 4.042707e-06 -0.0001769347 1.026145e-05
|
||||
|
||||
$param
|
||||
[1] 0.023201203 -0.589733445 0.002270755 0.500000000
|
||||
|
||||
$Fval
|
||||
[1] 1.745829e-14
|
||||
|
||||
$Exitflag
|
||||
[1] 1
|
||||
|
22
MMGestimationModeleCKLS.txt
Executable file
22
MMGestimationModeleCKLS.txt
Executable file
|
@ -0,0 +1,22 @@
|
|||
$Tstat
|
||||
[1] 2.230001e+01 1.427554e+01 7.295344e+07 3.728704e+08
|
||||
|
||||
$Tpvalue
|
||||
[1] 0 0 0 0
|
||||
|
||||
$Varparam
|
||||
[,1] [,2] [,3] [,4]
|
||||
[1,] 1.007635e-04 -0.0013847118 7.112886e-05 -1.391657e-05
|
||||
[2,] -1.384712e-03 0.0263571830 -2.666403e-03 5.216904e-04
|
||||
[3,] 7.112886e-05 -0.0026664029 4.020370e-03 -7.865998e-04
|
||||
[4,] -1.391657e-05 0.0005216904 -7.865998e-04 1.539011e-04
|
||||
|
||||
$param
|
||||
[1] 0.02320118 -0.58973285 0.03415926 0.96592708
|
||||
|
||||
$Fval
|
||||
[1] 3.111278e-17
|
||||
|
||||
$Exitflag
|
||||
[1] 1
|
||||
|
21
MMGestimationModeleVASICEK.txt
Executable file
21
MMGestimationModeleVASICEK.txt
Executable file
|
@ -0,0 +1,21 @@
|
|||
$Tstat
|
||||
[1] 21.944013 1.596719 10.980514
|
||||
|
||||
$Tpvalue
|
||||
[1] 0.000000e+00 5.858813e-02 9.547918e-15
|
||||
|
||||
$Varparam
|
||||
[,1] [,2] [,3]
|
||||
[1,] 1.007634e-04 -1.384712e-03 2.380418e-07
|
||||
[2,] -1.384712e-03 2.635719e-02 -9.901290e-06
|
||||
[3,] 2.380418e-07 -9.901290e-06 2.547791e-08
|
||||
|
||||
$param
|
||||
[1] 0.0232012075 -0.5897334630 0.0001117626 0.0000000000
|
||||
|
||||
$Fval
|
||||
[1] 8.788835e-18
|
||||
|
||||
$Exitflag
|
||||
[1] 1
|
||||
|
18
PCA-Pcorr.tex
Executable file
18
PCA-Pcorr.tex
Executable file
|
@ -0,0 +1,18 @@
|
|||
% latex table generated in R 2.13.1 by xtable 1.7-0 package
|
||||
% Thu Apr 12 21:52:52 2012
|
||||
\begin{table}[ht]
|
||||
\begin{center}
|
||||
\begin{tabular}{rrrrrrr}
|
||||
\hline
|
||||
& 1 & 2 & 3 & 4 & 5 & 6 \\
|
||||
\hline
|
||||
1 & -0.1957 & 0.9453 & -0.2133 & 0.1457 & -0.0362 & 0.0017 \\
|
||||
2 & -0.4367 & 0.1117 & 0.4137 & -0.5828 & 0.5041 & 0.1785 \\
|
||||
3 & -0.4226 & -0.0719 & 0.5529 & 0.7141 & 0.0234 & -0.0047 \\
|
||||
4 & -0.4611 & -0.0585 & 0.0472 & -0.3013 & -0.5541 & -0.6196 \\
|
||||
5 & -0.4526 & -0.1715 & -0.2958 & -0.0381 & -0.4083 & 0.7142 \\
|
||||
6 & -0.4182 & -0.2364 & -0.6229 & 0.1921 & 0.5199 & -0.2723 \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\end{center}
|
||||
\end{table}
|
18
PCA-Pcov.tex
Executable file
18
PCA-Pcov.tex
Executable file
|
@ -0,0 +1,18 @@
|
|||
% latex table generated in R 2.13.1 by xtable 1.7-0 package
|
||||
% Thu Apr 12 21:52:52 2012
|
||||
\begin{table}[ht]
|
||||
\begin{center}
|
||||
\begin{tabular}{rrrrrrr}
|
||||
\hline
|
||||
& 1 & 2 & 3 & 4 & 5 & 6 \\
|
||||
\hline
|
||||
1 & -0.1576 & 0.9315 & -0.2613 & -0.1936 & -0.0424 & 0.0027 \\
|
||||
2 & -0.4388 & 0.1746 & 0.3688 & 0.5881 & 0.5189 & 0.1611 \\
|
||||
3 & -0.4304 & -0.0499 & 0.5864 & -0.6842 & 0.0141 & -0.0083 \\
|
||||
4 & -0.4993 & -0.0455 & -0.0019 & 0.3105 & -0.5847 & -0.5570 \\
|
||||
5 & -0.4584 & -0.1913 & -0.3438 & -0.0074 & -0.2998 & 0.7383 \\
|
||||
6 & -0.3713 & -0.2465 & -0.5777 & -0.2282 & 0.5450 & -0.3443 \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\end{center}
|
||||
\end{table}
|
820
PCA-composantes1-2-3.pdf
Executable file
820
PCA-composantes1-2-3.pdf
Executable file
|
@ -0,0 +1,820 @@
|
|||
%PDF-1.4
|
||||
%<25>â<EFBFBD>ã<EFBFBD>Ï<EFBFBD>Ó\r
|
||||
1 0 obj
|
||||
<<
|
||||
/CreationDate (D:20120412215252)
|
||||
/ModDate (D:20120412215252)
|
||||
/Title (R Graphics Output)
|
||||
/Producer (R 2.13.1)
|
||||
/Creator (R)
|
||||
>>
|
||||
endobj
|
||||
2 0 obj
|
||||
<<
|
||||
/Type /Catalog
|
||||
/Pages 3 0 R
|
||||
>>
|
||||
endobj
|
||||
7 0 obj
|
||||
<<
|
||||
/Type /Page
|
||||
/Parent 3 0 R
|
||||
/Contents 8 0 R
|
||||
/Resources 4 0 R
|
||||
>>
|
||||
endobj
|
||||
8 0 obj
|
||||
<<
|
||||
/Length 9 0 R
|
||||
>>
|
||||
stream
|
||||
1 J 1 j q
|
||||
Q q 38.97 300.47 109.08 164.56 re W n
|
||||
/sRGB CS 0.000 0.000 1.000 SCN
|
||||
0.75 w
|
||||
[] 0 d
|
||||
1 J
|
||||
1 j
|
||||
10.00 M
|
||||
43.01 370.74 m
|
||||
48.95 349.32 l
|
||||
52.34 349.96 l
|
||||
59.13 344.71 l
|
||||
76.11 347.83 l
|
||||
144.00 354.47 l
|
||||
S
|
||||
Q q
|
||||
/sRGB CS 0.000 0.000 0.000 SCN
|
||||
0.75 w
|
||||
[] 0 d
|
||||
1 J
|
||||
1 j
|
||||
10.00 M
|
||||
42.16 300.47 m 144.00 300.47 l S
|
||||
42.16 300.47 m 42.16 295.72 l S
|
||||
59.13 300.47 m 59.13 295.72 l S
|
||||
76.11 300.47 m 76.11 295.72 l S
|
||||
93.08 300.47 m 93.08 295.72 l S
|
||||
110.05 300.47 m 110.05 295.72 l S
|
||||
127.03 300.47 m 127.03 295.72 l S
|
||||
144.00 300.47 m 144.00 295.72 l S
|
||||
BT
|
||||
/sRGB cs 0.000 0.000 0.000 scn
|
||||
/F2 1 Tf 8.00 0.00 -0.00 8.00 39.93 283.36 Tm (0) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 8.00 0.00 -0.00 8.00 56.91 283.36 Tm (5) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 8.00 0.00 -0.00 8.00 71.66 283.36 Tm (10) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 8.00 0.00 -0.00 8.00 88.63 283.36 Tm (15) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 8.00 0.00 -0.00 8.00 105.61 283.36 Tm (20) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 8.00 0.00 -0.00 8.00 122.58 283.36 Tm (25) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 8.00 0.00 -0.00 8.00 139.55 283.36 Tm (30) Tj
|
||||
ET
|
||||
38.97 306.57 m 38.97 458.94 l S
|
||||
38.97 306.57 m 34.21 306.57 l S
|
||||
38.97 344.66 m 34.21 344.66 l S
|
||||
38.97 382.75 m 34.21 382.75 l S
|
||||
38.97 420.85 m 34.21 420.85 l S
|
||||
38.97 458.94 m 34.21 458.94 l S
|
||||
BT
|
||||
/F2 1 Tf 0.00 8.00 -8.00 0.00 27.56 298.67 Tm (-1.0) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 0.00 8.00 -8.00 0.00 27.56 336.76 Tm (-0.5) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 0.00 8.00 -8.00 0.00 27.56 377.19 Tm (0.0) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 0.00 8.00 -8.00 0.00 27.56 415.29 Tm (0.5) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 0.00 8.00 -8.00 0.00 27.56 453.38 Tm (1.0) Tj
|
||||
ET
|
||||
38.97 300.47 m
|
||||
148.04 300.47 l
|
||||
148.04 465.03 l
|
||||
38.97 465.03 l
|
||||
38.97 300.47 l
|
||||
S
|
||||
Q q 0.00 252.00 168.00 252.00 re W n
|
||||
BT
|
||||
/sRGB cs 0.000 0.000 0.000 scn
|
||||
/F2 1 Tf 8.00 0.00 -0.00 8.00 85.95 264.36 Tm (time) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 0.00 8.00 -8.00 0.00 8.55 373.41 Tm (P[, 1]) Tj
|
||||
ET
|
||||
Q q 206.97 300.47 109.08 164.56 re W n
|
||||
Q q 206.97 300.47 109.08 164.56 re W n
|
||||
/sRGB CS 0.000 0.000 1.000 SCN
|
||||
0.75 w
|
||||
[] 0 d
|
||||
1 J
|
||||
1 j
|
||||
10.00 M
|
||||
211.01 453.72 m
|
||||
216.95 396.05 l
|
||||
220.34 378.95 l
|
||||
227.13 379.29 l
|
||||
244.11 368.18 l
|
||||
312.00 363.97 l
|
||||
S
|
||||
Q q
|
||||
/sRGB CS 0.000 0.000 0.000 SCN
|
||||
0.75 w
|
||||
[] 0 d
|
||||
1 J
|
||||
1 j
|
||||
10.00 M
|
||||
210.16 300.47 m 312.00 300.47 l S
|
||||
210.16 300.47 m 210.16 295.72 l S
|
||||
227.13 300.47 m 227.13 295.72 l S
|
||||
244.11 300.47 m 244.11 295.72 l S
|
||||
261.08 300.47 m 261.08 295.72 l S
|
||||
278.05 300.47 m 278.05 295.72 l S
|
||||
295.03 300.47 m 295.03 295.72 l S
|
||||
312.00 300.47 m 312.00 295.72 l S
|
||||
BT
|
||||
/sRGB cs 0.000 0.000 0.000 scn
|
||||
/F2 1 Tf 8.00 0.00 -0.00 8.00 207.93 283.36 Tm (0) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 8.00 0.00 -0.00 8.00 224.91 283.36 Tm (5) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 8.00 0.00 -0.00 8.00 239.66 283.36 Tm (10) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 8.00 0.00 -0.00 8.00 256.63 283.36 Tm (15) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 8.00 0.00 -0.00 8.00 273.61 283.36 Tm (20) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 8.00 0.00 -0.00 8.00 290.58 283.36 Tm (25) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 8.00 0.00 -0.00 8.00 307.55 283.36 Tm (30) Tj
|
||||
ET
|
||||
206.97 306.57 m 206.97 458.94 l S
|
||||
206.97 306.57 m 202.21 306.57 l S
|
||||
206.97 344.66 m 202.21 344.66 l S
|
||||
206.97 382.75 m 202.21 382.75 l S
|
||||
206.97 420.85 m 202.21 420.85 l S
|
||||
206.97 458.94 m 202.21 458.94 l S
|
||||
BT
|
||||
/F2 1 Tf 0.00 8.00 -8.00 0.00 195.56 298.67 Tm (-1.0) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 0.00 8.00 -8.00 0.00 195.56 336.76 Tm (-0.5) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 0.00 8.00 -8.00 0.00 195.56 377.19 Tm (0.0) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 0.00 8.00 -8.00 0.00 195.56 415.29 Tm (0.5) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 0.00 8.00 -8.00 0.00 195.56 453.38 Tm (1.0) Tj
|
||||
ET
|
||||
206.97 300.47 m
|
||||
316.04 300.47 l
|
||||
316.04 465.03 l
|
||||
206.97 465.03 l
|
||||
206.97 300.47 l
|
||||
S
|
||||
Q q 168.00 252.00 168.00 252.00 re W n
|
||||
BT
|
||||
/sRGB cs 0.000 0.000 0.000 scn
|
||||
/F2 1 Tf 8.00 0.00 -0.00 8.00 253.95 264.36 Tm (time) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 0.00 8.00 -8.00 0.00 176.55 373.41 Tm (P[, 2]) Tj
|
||||
ET
|
||||
Q q 374.97 300.47 109.08 164.56 re W n
|
||||
Q q 374.97 300.47 109.08 164.56 re W n
|
||||
/sRGB CS 0.000 0.000 1.000 SCN
|
||||
0.75 w
|
||||
[] 0 d
|
||||
1 J
|
||||
1 j
|
||||
10.00 M
|
||||
379.01 362.85 m
|
||||
384.95 410.85 l
|
||||
388.34 427.43 l
|
||||
395.13 382.61 l
|
||||
412.11 356.56 l
|
||||
480.00 338.74 l
|
||||
S
|
||||
Q q
|
||||
/sRGB CS 0.000 0.000 0.000 SCN
|
||||
0.75 w
|
||||
[] 0 d
|
||||
1 J
|
||||
1 j
|
||||
10.00 M
|
||||
378.16 300.47 m 480.00 300.47 l S
|
||||
378.16 300.47 m 378.16 295.72 l S
|
||||
395.13 300.47 m 395.13 295.72 l S
|
||||
412.11 300.47 m 412.11 295.72 l S
|
||||
429.08 300.47 m 429.08 295.72 l S
|
||||
446.05 300.47 m 446.05 295.72 l S
|
||||
463.03 300.47 m 463.03 295.72 l S
|
||||
480.00 300.47 m 480.00 295.72 l S
|
||||
BT
|
||||
/sRGB cs 0.000 0.000 0.000 scn
|
||||
/F2 1 Tf 8.00 0.00 -0.00 8.00 375.93 283.36 Tm (0) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 8.00 0.00 -0.00 8.00 392.91 283.36 Tm (5) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 8.00 0.00 -0.00 8.00 407.66 283.36 Tm (10) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 8.00 0.00 -0.00 8.00 424.63 283.36 Tm (15) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 8.00 0.00 -0.00 8.00 441.61 283.36 Tm (20) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 8.00 0.00 -0.00 8.00 458.58 283.36 Tm (25) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 8.00 0.00 -0.00 8.00 475.55 283.36 Tm (30) Tj
|
||||
ET
|
||||
374.97 306.57 m 374.97 458.94 l S
|
||||
374.97 306.57 m 370.21 306.57 l S
|
||||
374.97 344.66 m 370.21 344.66 l S
|
||||
374.97 382.75 m 370.21 382.75 l S
|
||||
374.97 420.85 m 370.21 420.85 l S
|
||||
374.97 458.94 m 370.21 458.94 l S
|
||||
BT
|
||||
/F2 1 Tf 0.00 8.00 -8.00 0.00 363.56 298.67 Tm (-1.0) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 0.00 8.00 -8.00 0.00 363.56 336.76 Tm (-0.5) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 0.00 8.00 -8.00 0.00 363.56 377.19 Tm (0.0) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 0.00 8.00 -8.00 0.00 363.56 415.29 Tm (0.5) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 0.00 8.00 -8.00 0.00 363.56 453.38 Tm (1.0) Tj
|
||||
ET
|
||||
374.97 300.47 m
|
||||
484.04 300.47 l
|
||||
484.04 465.03 l
|
||||
374.97 465.03 l
|
||||
374.97 300.47 l
|
||||
S
|
||||
Q q 336.00 252.00 168.00 252.00 re W n
|
||||
BT
|
||||
/sRGB cs 0.000 0.000 0.000 scn
|
||||
/F2 1 Tf 8.00 0.00 -0.00 8.00 421.95 264.36 Tm (time) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 0.00 8.00 -8.00 0.00 344.55 373.41 Tm (P[, 3]) Tj
|
||||
ET
|
||||
Q q 38.97 48.47 109.08 164.56 re W n
|
||||
Q q 38.97 48.47 109.08 164.56 re W n
|
||||
/sRGB CS 1.000 0.000 0.000 SCN
|
||||
0.75 w
|
||||
[] 0 d
|
||||
1 J
|
||||
1 j
|
||||
10.00 M
|
||||
43.01 115.84 m
|
||||
48.95 97.48 l
|
||||
52.34 98.55 l
|
||||
59.13 95.62 l
|
||||
76.11 96.27 l
|
||||
144.00 98.89 l
|
||||
S
|
||||
Q q
|
||||
/sRGB CS 0.000 0.000 0.000 SCN
|
||||
0.75 w
|
||||
[] 0 d
|
||||
1 J
|
||||
1 j
|
||||
10.00 M
|
||||
42.16 48.47 m 144.00 48.47 l S
|
||||
42.16 48.47 m 42.16 43.72 l S
|
||||
59.13 48.47 m 59.13 43.72 l S
|
||||
76.11 48.47 m 76.11 43.72 l S
|
||||
93.08 48.47 m 93.08 43.72 l S
|
||||
110.05 48.47 m 110.05 43.72 l S
|
||||
127.03 48.47 m 127.03 43.72 l S
|
||||
144.00 48.47 m 144.00 43.72 l S
|
||||
BT
|
||||
/sRGB cs 0.000 0.000 0.000 scn
|
||||
/F2 1 Tf 8.00 0.00 -0.00 8.00 39.93 31.36 Tm (0) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 8.00 0.00 -0.00 8.00 56.91 31.36 Tm (5) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 8.00 0.00 -0.00 8.00 71.66 31.36 Tm (10) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 8.00 0.00 -0.00 8.00 88.63 31.36 Tm (15) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 8.00 0.00 -0.00 8.00 105.61 31.36 Tm (20) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 8.00 0.00 -0.00 8.00 122.58 31.36 Tm (25) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 8.00 0.00 -0.00 8.00 139.55 31.36 Tm (30) Tj
|
||||
ET
|
||||
38.97 54.57 m 38.97 206.94 l S
|
||||
38.97 54.57 m 34.21 54.57 l S
|
||||
38.97 92.66 m 34.21 92.66 l S
|
||||
38.97 130.75 m 34.21 130.75 l S
|
||||
38.97 168.85 m 34.21 168.85 l S
|
||||
38.97 206.94 m 34.21 206.94 l S
|
||||
BT
|
||||
/F2 1 Tf 0.00 8.00 -8.00 0.00 27.56 46.67 Tm (-1.0) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 0.00 8.00 -8.00 0.00 27.56 84.76 Tm (-0.5) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 0.00 8.00 -8.00 0.00 27.56 125.19 Tm (0.0) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 0.00 8.00 -8.00 0.00 27.56 163.29 Tm (0.5) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 0.00 8.00 -8.00 0.00 27.56 201.38 Tm (1.0) Tj
|
||||
ET
|
||||
38.97 48.47 m
|
||||
148.04 48.47 l
|
||||
148.04 213.03 l
|
||||
38.97 213.03 l
|
||||
38.97 48.47 l
|
||||
S
|
||||
Q q 0.00 0.00 168.00 252.00 re W n
|
||||
BT
|
||||
/sRGB cs 0.000 0.000 0.000 scn
|
||||
/F2 1 Tf 8.00 0.00 -0.00 8.00 85.95 12.36 Tm (time) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 0.00 8.00 -8.00 0.00 8.55 114.52 Tm (Pcorr[, 1]) Tj
|
||||
ET
|
||||
Q q 206.97 48.47 109.08 164.56 re W n
|
||||
Q q 206.97 48.47 109.08 164.56 re W n
|
||||
/sRGB CS 1.000 0.000 0.000 SCN
|
||||
0.75 w
|
||||
[] 0 d
|
||||
1 J
|
||||
1 j
|
||||
10.00 M
|
||||
211.01 202.77 m
|
||||
216.95 139.26 l
|
||||
220.34 125.27 l
|
||||
227.13 126.29 l
|
||||
244.11 117.69 l
|
||||
312.00 112.74 l
|
||||
S
|
||||
Q q
|
||||
/sRGB CS 0.000 0.000 0.000 SCN
|
||||
0.75 w
|
||||
[] 0 d
|
||||
1 J
|
||||
1 j
|
||||
10.00 M
|
||||
210.16 48.47 m 312.00 48.47 l S
|
||||
210.16 48.47 m 210.16 43.72 l S
|
||||
227.13 48.47 m 227.13 43.72 l S
|
||||
244.11 48.47 m 244.11 43.72 l S
|
||||
261.08 48.47 m 261.08 43.72 l S
|
||||
278.05 48.47 m 278.05 43.72 l S
|
||||
295.03 48.47 m 295.03 43.72 l S
|
||||
312.00 48.47 m 312.00 43.72 l S
|
||||
BT
|
||||
/sRGB cs 0.000 0.000 0.000 scn
|
||||
/F2 1 Tf 8.00 0.00 -0.00 8.00 207.93 31.36 Tm (0) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 8.00 0.00 -0.00 8.00 224.91 31.36 Tm (5) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 8.00 0.00 -0.00 8.00 239.66 31.36 Tm (10) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 8.00 0.00 -0.00 8.00 256.63 31.36 Tm (15) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 8.00 0.00 -0.00 8.00 273.61 31.36 Tm (20) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 8.00 0.00 -0.00 8.00 290.58 31.36 Tm (25) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 8.00 0.00 -0.00 8.00 307.55 31.36 Tm (30) Tj
|
||||
ET
|
||||
206.97 54.57 m 206.97 206.94 l S
|
||||
206.97 54.57 m 202.21 54.57 l S
|
||||
206.97 92.66 m 202.21 92.66 l S
|
||||
206.97 130.75 m 202.21 130.75 l S
|
||||
206.97 168.85 m 202.21 168.85 l S
|
||||
206.97 206.94 m 202.21 206.94 l S
|
||||
BT
|
||||
/F2 1 Tf 0.00 8.00 -8.00 0.00 195.56 46.67 Tm (-1.0) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 0.00 8.00 -8.00 0.00 195.56 84.76 Tm (-0.5) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 0.00 8.00 -8.00 0.00 195.56 125.19 Tm (0.0) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 0.00 8.00 -8.00 0.00 195.56 163.29 Tm (0.5) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 0.00 8.00 -8.00 0.00 195.56 201.38 Tm (1.0) Tj
|
||||
ET
|
||||
206.97 48.47 m
|
||||
316.04 48.47 l
|
||||
316.04 213.03 l
|
||||
206.97 213.03 l
|
||||
206.97 48.47 l
|
||||
S
|
||||
Q q 168.00 0.00 168.00 252.00 re W n
|
||||
BT
|
||||
/sRGB cs 0.000 0.000 0.000 scn
|
||||
/F2 1 Tf 8.00 0.00 -0.00 8.00 253.95 12.36 Tm (time) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 0.00 8.00 -8.00 0.00 176.55 114.52 Tm (Pcorr[, 2]) Tj
|
||||
ET
|
||||
Q q 374.97 48.47 109.08 164.56 re W n
|
||||
Q q 374.97 48.47 109.08 164.56 re W n
|
||||
/sRGB CS 1.000 0.000 0.000 SCN
|
||||
0.75 w
|
||||
[] 0 d
|
||||
1 J
|
||||
1 j
|
||||
10.00 M
|
||||
379.01 114.50 m
|
||||
384.95 162.27 l
|
||||
388.34 172.87 l
|
||||
395.13 134.35 l
|
||||
412.11 108.22 l
|
||||
480.00 83.30 l
|
||||
S
|
||||
Q q
|
||||
/sRGB CS 0.000 0.000 0.000 SCN
|
||||
0.75 w
|
||||
[] 0 d
|
||||
1 J
|
||||
1 j
|
||||
10.00 M
|
||||
378.16 48.47 m 480.00 48.47 l S
|
||||
378.16 48.47 m 378.16 43.72 l S
|
||||
395.13 48.47 m 395.13 43.72 l S
|
||||
412.11 48.47 m 412.11 43.72 l S
|
||||
429.08 48.47 m 429.08 43.72 l S
|
||||
446.05 48.47 m 446.05 43.72 l S
|
||||
463.03 48.47 m 463.03 43.72 l S
|
||||
480.00 48.47 m 480.00 43.72 l S
|
||||
BT
|
||||
/sRGB cs 0.000 0.000 0.000 scn
|
||||
/F2 1 Tf 8.00 0.00 -0.00 8.00 375.93 31.36 Tm (0) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 8.00 0.00 -0.00 8.00 392.91 31.36 Tm (5) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 8.00 0.00 -0.00 8.00 407.66 31.36 Tm (10) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 8.00 0.00 -0.00 8.00 424.63 31.36 Tm (15) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 8.00 0.00 -0.00 8.00 441.61 31.36 Tm (20) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 8.00 0.00 -0.00 8.00 458.58 31.36 Tm (25) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 8.00 0.00 -0.00 8.00 475.55 31.36 Tm (30) Tj
|
||||
ET
|
||||
374.97 54.57 m 374.97 206.94 l S
|
||||
374.97 54.57 m 370.21 54.57 l S
|
||||
374.97 92.66 m 370.21 92.66 l S
|
||||
374.97 130.75 m 370.21 130.75 l S
|
||||
374.97 168.85 m 370.21 168.85 l S
|
||||
374.97 206.94 m 370.21 206.94 l S
|
||||
BT
|
||||
/F2 1 Tf 0.00 8.00 -8.00 0.00 363.56 46.67 Tm (-1.0) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 0.00 8.00 -8.00 0.00 363.56 84.76 Tm (-0.5) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 0.00 8.00 -8.00 0.00 363.56 125.19 Tm (0.0) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 0.00 8.00 -8.00 0.00 363.56 163.29 Tm (0.5) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 0.00 8.00 -8.00 0.00 363.56 201.38 Tm (1.0) Tj
|
||||
ET
|
||||
374.97 48.47 m
|
||||
484.04 48.47 l
|
||||
484.04 213.03 l
|
||||
374.97 213.03 l
|
||||
374.97 48.47 l
|
||||
S
|
||||
Q q 336.00 0.00 168.00 252.00 re W n
|
||||
BT
|
||||
/sRGB cs 0.000 0.000 0.000 scn
|
||||
/F2 1 Tf 8.00 0.00 -0.00 8.00 421.95 12.36 Tm (time) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 0.00 8.00 -8.00 0.00 344.55 114.52 Tm (Pcorr[, 3]) Tj
|
||||
ET
|
||||
Q
|
||||
endstream
|
||||
endobj
|
||||
9 0 obj
|
||||
10732
|
||||
endobj
|
||||
3 0 obj
|
||||
<<
|
||||
/Type /Pages
|
||||
/Kids [
|
||||
7 0 R
|
||||
]
|
||||
/Count 1
|
||||
/MediaBox [0 0 504 504]
|
||||
>>
|
||||
endobj
|
||||
4 0 obj
|
||||
<<
|
||||
/ProcSet [/PDF /Text]
|
||||
/Font <</F2 11 0 R >>
|
||||
/ExtGState << >>
|
||||
/ColorSpace << /sRGB 5 0 R >>
|
||||
>>
|
||||
endobj
|
||||
5 0 obj
|
||||
[/ICCBased 6 0 R]
|
||||
endobj
|
||||
6 0 obj
|
||||
<< /N 3 /Alternate /DeviceRGB /Length 9433 /Filter /ASCIIHexDecode >>
|
||||
stream
|
||||
00 00 0c 48 4c 69 6e 6f 02 10 00 00 6d 6e 74 72
|
||||
52 47 42 20 58 59 5a 20 07 ce 00 02 00 09 00 06
|
||||
00 31 00 00 61 63 73 70 4d 53 46 54 00 00 00 00
|
||||
49 45 43 20 73 52 47 42 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 f6 d6 00 01 00 00 00 00 d3 2d
|
||||
48 50 20 20 00 00 00 00 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
|
||||
00 00 00 11 63 70 72 74 00 00 01 50 00 00 00 33
|
||||
64 65 73 63 00 00 01 84 00 00 00 6c 77 74 70 74
|
||||
00 00 01 f0 00 00 00 14 62 6b 70 74 00 00 02 04
|
||||
00 00 00 14 72 58 59 5a 00 00 02 18 00 00 00 14
|
||||
67 58 59 5a 00 00 02 2c 00 00 00 14 62 58 59 5a
|
||||
00 00 02 40 00 00 00 14 64 6d 6e 64 00 00 02 54
|
||||
00 00 00 70 64 6d 64 64 00 00 02 c4 00 00 00 88
|
||||
76 75 65 64 00 00 03 4c 00 00 00 86 76 69 65 77
|
||||
00 00 03 d4 00 00 00 24 6c 75 6d 69 00 00 03 f8
|
||||
00 00 00 14 6d 65 61 73 00 00 04 0c 00 00 00 24
|
||||
74 65 63 68 00 00 04 30 00 00 00 0c 72 54 52 43
|
||||
00 00 04 3c 00 00 08 0c 67 54 52 43 00 00 04 3c
|
||||
00 00 08 0c 62 54 52 43 00 00 04 3c 00 00 08 0c
|
||||
74 65 78 74 00 00 00 00 43 6f 70 79 72 69 67 68
|
||||
74 20 28 63 29 20 31 39 39 38 20 48 65 77 6c 65
|
||||
74 74 2d 50 61 63 6b 61 72 64 20 43 6f 6d 70 61
|
||||
6e 79 00 00 64 65 73 63 00 00 00 00 00 00 00 12
|
||||
73 52 47 42 20 49 45 43 36 31 39 36 36 2d 32 2e
|
||||
31 00 00 00 00 00 00 00 00 00 00 00 12 73 52 47
|
||||
42 20 49 45 43 36 31 39 36 36 2d 32 2e 31 00 00
|
||||
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
|
||||
58 59 5a 20 00 00 00 00 00 00 f3 51 00 01 00 00
|
||||
00 01 16 cc 58 59 5a 20 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 00 00 58 59 5a 20 00 00 00 00
|
||||
00 00 6f a2 00 00 38 f5 00 00 03 90 58 59 5a 20
|
||||
00 00 00 00 00 00 62 99 00 00 b7 85 00 00 18 da
|
||||
58 59 5a 20 00 00 00 00 00 00 24 a0 00 00 0f 84
|
||||
00 00 b6 cf 64 65 73 63 00 00 00 00 00 00 00 16
|
||||
49 45 43 20 68 74 74 70 3a 2f 2f 77 77 77 2e 69
|
||||
65 63 2e 63 68 00 00 00 00 00 00 00 00 00 00 00
|
||||
16 49 45 43 20 68 74 74 70 3a 2f 2f 77 77 77 2e
|
||||
69 65 63 2e 63 68 00 00 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 64 65 73 63 00 00 00 00 00 00 00 2e
|
||||
49 45 43 20 36 31 39 36 36 2d 32 2e 31 20 44 65
|
||||
66 61 75 6c 74 20 52 47 42 20 63 6f 6c 6f 75 72
|
||||
20 73 70 61 63 65 20 2d 20 73 52 47 42 00 00 00
|
||||
00 00 00 00 00 00 00 00 2e 49 45 43 20 36 31 39
|
||||
36 36 2d 32 2e 31 20 44 65 66 61 75 6c 74 20 52
|
||||
47 42 20 63 6f 6c 6f 75 72 20 73 70 61 63 65 20
|
||||
2d 20 73 52 47 42 00 00 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 00 00 00 00 00 00 64 65 73 63
|
||||
00 00 00 00 00 00 00 2c 52 65 66 65 72 65 6e 63
|
||||
65 20 56 69 65 77 69 6e 67 20 43 6f 6e 64 69 74
|
||||
69 6f 6e 20 69 6e 20 49 45 43 36 31 39 36 36 2d
|
||||
32 2e 31 00 00 00 00 00 00 00 00 00 00 00 2c 52
|
||||
65 66 65 72 65 6e 63 65 20 56 69 65 77 69 6e 67
|
||||
20 43 6f 6e 64 69 74 69 6f 6e 20 69 6e 20 49 45
|
||||
43 36 31 39 36 36 2d 32 2e 31 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 76 69 65 77 00 00 00 00 00 13 a4 fe
|
||||
00 14 5f 2e 00 10 cf 14 00 03 ed cc 00 04 13 0b
|
||||
00 03 5c 9e 00 00 00 01 58 59 5a 20 00 00 00 00
|
||||
00 4c 09 56 00 50 00 00 00 57 1f e7 6d 65 61 73
|
||||
00 00 00 00 00 00 00 01 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 00 00 00 00 02 8f 00 00 00 02
|
||||
73 69 67 20 00 00 00 00 43 52 54 20 63 75 72 76
|
||||
00 00 00 00 00 00 04 00 00 00 00 05 00 0a 00 0f
|
||||
00 14 00 19 00 1e 00 23 00 28 00 2d 00 32 00 37
|
||||
00 3b 00 40 00 45 00 4a 00 4f 00 54 00 59 00 5e
|
||||
00 63 00 68 00 6d 00 72 00 77 00 7c 00 81 00 86
|
||||
00 8b 00 90 00 95 00 9a 00 9f 00 a4 00 a9 00 ae
|
||||
00 b2 00 b7 00 bc 00 c1 00 c6 00 cb 00 d0 00 d5
|
||||
00 db 00 e0 00 e5 00 eb 00 f0 00 f6 00 fb 01 01
|
||||
01 07 01 0d 01 13 01 19 01 1f 01 25 01 2b 01 32
|
||||
01 38 01 3e 01 45 01 4c 01 52 01 59 01 60 01 67
|
||||
01 6e 01 75 01 7c 01 83 01 8b 01 92 01 9a 01 a1
|
||||
01 a9 01 b1 01 b9 01 c1 01 c9 01 d1 01 d9 01 e1
|
||||
01 e9 01 f2 01 fa 02 03 02 0c 02 14 02 1d 02 26
|
||||
02 2f 02 38 02 41 02 4b 02 54 02 5d 02 67 02 71
|
||||
02 7a 02 84 02 8e 02 98 02 a2 02 ac 02 b6 02 c1
|
||||
02 cb 02 d5 02 e0 02 eb 02 f5 03 00 03 0b 03 16
|
||||
03 21 03 2d 03 38 03 43 03 4f 03 5a 03 66 03 72
|
||||
03 7e 03 8a 03 96 03 a2 03 ae 03 ba 03 c7 03 d3
|
||||
03 e0 03 ec 03 f9 04 06 04 13 04 20 04 2d 04 3b
|
||||
04 48 04 55 04 63 04 71 04 7e 04 8c 04 9a 04 a8
|
||||
04 b6 04 c4 04 d3 04 e1 04 f0 04 fe 05 0d 05 1c
|
||||
05 2b 05 3a 05 49 05 58 05 67 05 77 05 86 05 96
|
||||
05 a6 05 b5 05 c5 05 d5 05 e5 05 f6 06 06 06 16
|
||||
06 27 06 37 06 48 06 59 06 6a 06 7b 06 8c 06 9d
|
||||
06 af 06 c0 06 d1 06 e3 06 f5 07 07 07 19 07 2b
|
||||
07 3d 07 4f 07 61 07 74 07 86 07 99 07 ac 07 bf
|
||||
07 d2 07 e5 07 f8 08 0b 08 1f 08 32 08 46 08 5a
|
||||
08 6e 08 82 08 96 08 aa 08 be 08 d2 08 e7 08 fb
|
||||
09 10 09 25 09 3a 09 4f 09 64 09 79 09 8f 09 a4
|
||||
09 ba 09 cf 09 e5 09 fb 0a 11 0a 27 0a 3d 0a 54
|
||||
0a 6a 0a 81 0a 98 0a ae 0a c5 0a dc 0a f3 0b 0b
|
||||
0b 22 0b 39 0b 51 0b 69 0b 80 0b 98 0b b0 0b c8
|
||||
0b e1 0b f9 0c 12 0c 2a 0c 43 0c 5c 0c 75 0c 8e
|
||||
0c a7 0c c0 0c d9 0c f3 0d 0d 0d 26 0d 40 0d 5a
|
||||
0d 74 0d 8e 0d a9 0d c3 0d de 0d f8 0e 13 0e 2e
|
||||
0e 49 0e 64 0e 7f 0e 9b 0e b6 0e d2 0e ee 0f 09
|
||||
0f 25 0f 41 0f 5e 0f 7a 0f 96 0f b3 0f cf 0f ec
|
||||
10 09 10 26 10 43 10 61 10 7e 10 9b 10 b9 10 d7
|
||||
10 f5 11 13 11 31 11 4f 11 6d 11 8c 11 aa 11 c9
|
||||
11 e8 12 07 12 26 12 45 12 64 12 84 12 a3 12 c3
|
||||
12 e3 13 03 13 23 13 43 13 63 13 83 13 a4 13 c5
|
||||
13 e5 14 06 14 27 14 49 14 6a 14 8b 14 ad 14 ce
|
||||
14 f0 15 12 15 34 15 56 15 78 15 9b 15 bd 15 e0
|
||||
16 03 16 26 16 49 16 6c 16 8f 16 b2 16 d6 16 fa
|
||||
17 1d 17 41 17 65 17 89 17 ae 17 d2 17 f7 18 1b
|
||||
18 40 18 65 18 8a 18 af 18 d5 18 fa 19 20 19 45
|
||||
19 6b 19 91 19 b7 19 dd 1a 04 1a 2a 1a 51 1a 77
|
||||
1a 9e 1a c5 1a ec 1b 14 1b 3b 1b 63 1b 8a 1b b2
|
||||
1b da 1c 02 1c 2a 1c 52 1c 7b 1c a3 1c cc 1c f5
|
||||
1d 1e 1d 47 1d 70 1d 99 1d c3 1d ec 1e 16 1e 40
|
||||
1e 6a 1e 94 1e be 1e e9 1f 13 1f 3e 1f 69 1f 94
|
||||
1f bf 1f ea 20 15 20 41 20 6c 20 98 20 c4 20 f0
|
||||
21 1c 21 48 21 75 21 a1 21 ce 21 fb 22 27 22 55
|
||||
22 82 22 af 22 dd 23 0a 23 38 23 66 23 94 23 c2
|
||||
23 f0 24 1f 24 4d 24 7c 24 ab 24 da 25 09 25 38
|
||||
25 68 25 97 25 c7 25 f7 26 27 26 57 26 87 26 b7
|
||||
26 e8 27 18 27 49 27 7a 27 ab 27 dc 28 0d 28 3f
|
||||
28 71 28 a2 28 d4 29 06 29 38 29 6b 29 9d 29 d0
|
||||
2a 02 2a 35 2a 68 2a 9b 2a cf 2b 02 2b 36 2b 69
|
||||
2b 9d 2b d1 2c 05 2c 39 2c 6e 2c a2 2c d7 2d 0c
|
||||
2d 41 2d 76 2d ab 2d e1 2e 16 2e 4c 2e 82 2e b7
|
||||
2e ee 2f 24 2f 5a 2f 91 2f c7 2f fe 30 35 30 6c
|
||||
30 a4 30 db 31 12 31 4a 31 82 31 ba 31 f2 32 2a
|
||||
32 63 32 9b 32 d4 33 0d 33 46 33 7f 33 b8 33 f1
|
||||
34 2b 34 65 34 9e 34 d8 35 13 35 4d 35 87 35 c2
|
||||
35 fd 36 37 36 72 36 ae 36 e9 37 24 37 60 37 9c
|
||||
37 d7 38 14 38 50 38 8c 38 c8 39 05 39 42 39 7f
|
||||
39 bc 39 f9 3a 36 3a 74 3a b2 3a ef 3b 2d 3b 6b
|
||||
3b aa 3b e8 3c 27 3c 65 3c a4 3c e3 3d 22 3d 61
|
||||
3d a1 3d e0 3e 20 3e 60 3e a0 3e e0 3f 21 3f 61
|
||||
3f a2 3f e2 40 23 40 64 40 a6 40 e7 41 29 41 6a
|
||||
41 ac 41 ee 42 30 42 72 42 b5 42 f7 43 3a 43 7d
|
||||
43 c0 44 03 44 47 44 8a 44 ce 45 12 45 55 45 9a
|
||||
45 de 46 22 46 67 46 ab 46 f0 47 35 47 7b 47 c0
|
||||
48 05 48 4b 48 91 48 d7 49 1d 49 63 49 a9 49 f0
|
||||
4a 37 4a 7d 4a c4 4b 0c 4b 53 4b 9a 4b e2 4c 2a
|
||||
4c 72 4c ba 4d 02 4d 4a 4d 93 4d dc 4e 25 4e 6e
|
||||
4e b7 4f 00 4f 49 4f 93 4f dd 50 27 50 71 50 bb
|
||||
51 06 51 50 51 9b 51 e6 52 31 52 7c 52 c7 53 13
|
||||
53 5f 53 aa 53 f6 54 42 54 8f 54 db 55 28 55 75
|
||||
55 c2 56 0f 56 5c 56 a9 56 f7 57 44 57 92 57 e0
|
||||
58 2f 58 7d 58 cb 59 1a 59 69 59 b8 5a 07 5a 56
|
||||
5a a6 5a f5 5b 45 5b 95 5b e5 5c 35 5c 86 5c d6
|
||||
5d 27 5d 78 5d c9 5e 1a 5e 6c 5e bd 5f 0f 5f 61
|
||||
5f b3 60 05 60 57 60 aa 60 fc 61 4f 61 a2 61 f5
|
||||
62 49 62 9c 62 f0 63 43 63 97 63 eb 64 40 64 94
|
||||
64 e9 65 3d 65 92 65 e7 66 3d 66 92 66 e8 67 3d
|
||||
67 93 67 e9 68 3f 68 96 68 ec 69 43 69 9a 69 f1
|
||||
6a 48 6a 9f 6a f7 6b 4f 6b a7 6b ff 6c 57 6c af
|
||||
6d 08 6d 60 6d b9 6e 12 6e 6b 6e c4 6f 1e 6f 78
|
||||
6f d1 70 2b 70 86 70 e0 71 3a 71 95 71 f0 72 4b
|
||||
72 a6 73 01 73 5d 73 b8 74 14 74 70 74 cc 75 28
|
||||
75 85 75 e1 76 3e 76 9b 76 f8 77 56 77 b3 78 11
|
||||
78 6e 78 cc 79 2a 79 89 79 e7 7a 46 7a a5 7b 04
|
||||
7b 63 7b c2 7c 21 7c 81 7c e1 7d 41 7d a1 7e 01
|
||||
7e 62 7e c2 7f 23 7f 84 7f e5 80 47 80 a8 81 0a
|
||||
81 6b 81 cd 82 30 82 92 82 f4 83 57 83 ba 84 1d
|
||||
84 80 84 e3 85 47 85 ab 86 0e 86 72 86 d7 87 3b
|
||||
87 9f 88 04 88 69 88 ce 89 33 89 99 89 fe 8a 64
|
||||
8a ca 8b 30 8b 96 8b fc 8c 63 8c ca 8d 31 8d 98
|
||||
8d ff 8e 66 8e ce 8f 36 8f 9e 90 06 90 6e 90 d6
|
||||
91 3f 91 a8 92 11 92 7a 92 e3 93 4d 93 b6 94 20
|
||||
94 8a 94 f4 95 5f 95 c9 96 34 96 9f 97 0a 97 75
|
||||
97 e0 98 4c 98 b8 99 24 99 90 99 fc 9a 68 9a d5
|
||||
9b 42 9b af 9c 1c 9c 89 9c f7 9d 64 9d d2 9e 40
|
||||
9e ae 9f 1d 9f 8b 9f fa a0 69 a0 d8 a1 47 a1 b6
|
||||
a2 26 a2 96 a3 06 a3 76 a3 e6 a4 56 a4 c7 a5 38
|
||||
a5 a9 a6 1a a6 8b a6 fd a7 6e a7 e0 a8 52 a8 c4
|
||||
a9 37 a9 a9 aa 1c aa 8f ab 02 ab 75 ab e9 ac 5c
|
||||
ac d0 ad 44 ad b8 ae 2d ae a1 af 16 af 8b b0 00
|
||||
b0 75 b0 ea b1 60 b1 d6 b2 4b b2 c2 b3 38 b3 ae
|
||||
b4 25 b4 9c b5 13 b5 8a b6 01 b6 79 b6 f0 b7 68
|
||||
b7 e0 b8 59 b8 d1 b9 4a b9 c2 ba 3b ba b5 bb 2e
|
||||
bb a7 bc 21 bc 9b bd 15 bd 8f be 0a be 84 be ff
|
||||
bf 7a bf f5 c0 70 c0 ec c1 67 c1 e3 c2 5f c2 db
|
||||
c3 58 c3 d4 c4 51 c4 ce c5 4b c5 c8 c6 46 c6 c3
|
||||
c7 41 c7 bf c8 3d c8 bc c9 3a c9 b9 ca 38 ca b7
|
||||
cb 36 cb b6 cc 35 cc b5 cd 35 cd b5 ce 36 ce b6
|
||||
cf 37 cf b8 d0 39 d0 ba d1 3c d1 be d2 3f d2 c1
|
||||
d3 44 d3 c6 d4 49 d4 cb d5 4e d5 d1 d6 55 d6 d8
|
||||
d7 5c d7 e0 d8 64 d8 e8 d9 6c d9 f1 da 76 da fb
|
||||
db 80 dc 05 dc 8a dd 10 dd 96 de 1c de a2 df 29
|
||||
df af e0 36 e0 bd e1 44 e1 cc e2 53 e2 db e3 63
|
||||
e3 eb e4 73 e4 fc e5 84 e6 0d e6 96 e7 1f e7 a9
|
||||
e8 32 e8 bc e9 46 e9 d0 ea 5b ea e5 eb 70 eb fb
|
||||
ec 86 ed 11 ed 9c ee 28 ee b4 ef 40 ef cc f0 58
|
||||
f0 e5 f1 72 f1 ff f2 8c f3 19 f3 a7 f4 34 f4 c2
|
||||
f5 50 f5 de f6 6d f6 fb f7 8a f8 19 f8 a8 f9 38
|
||||
f9 c7 fa 57 fa e7 fb 77 fc 07 fc 98 fd 29 fd ba
|
||||
fe 4b fe dc ff 6d ff ff >
|
||||
endstream
|
||||
endobj
|
||||
10 0 obj
|
||||
<<
|
||||
/Type /Encoding
|
||||
/BaseEncoding /WinAnsiEncoding
|
||||
/Differences [ 45/minus 96/quoteleft
|
||||
144/dotlessi /grave /acute /circumflex /tilde /macron /breve /dotaccent
|
||||
/dieresis /.notdef /ring /cedilla /.notdef /hungarumlaut /ogonek /caron /space]
|
||||
>>
|
||||
endobj
|
||||
11 0 obj <<
|
||||
/Type /Font
|
||||
/Subtype /Type1
|
||||
/Name /F2
|
||||
/BaseFont /Helvetica
|
||||
/Encoding 10 0 R
|
||||
>> endobj
|
||||
xref
|
||||
0 12
|
||||
0000000000 65535 f
|
||||
0000000021 00000 n
|
||||
0000000164 00000 n
|
||||
0000011098 00000 n
|
||||
0000011181 00000 n
|
||||
0000011293 00000 n
|
||||
0000011326 00000 n
|
||||
0000000213 00000 n
|
||||
0000000293 00000 n
|
||||
0000011077 00000 n
|
||||
0000020862 00000 n
|
||||
0000021120 00000 n
|
||||
trailer
|
||||
<<
|
||||
/Size 12
|
||||
/Info 1 0 R
|
||||
/Root 2 0 R
|
||||
>>
|
||||
startxref
|
||||
21218
|
||||
%%EOF
|
13
PCA-lambdacorr.tex
Executable file
13
PCA-lambdacorr.tex
Executable file
|
@ -0,0 +1,13 @@
|
|||
% latex table generated in R 2.13.1 by xtable 1.7-0 package
|
||||
% Thu Apr 12 21:52:52 2012
|
||||
\begin{table}[ht]
|
||||
\begin{center}
|
||||
\begin{tabular}{rrrrrrr}
|
||||
\hline
|
||||
& 1 & 2 & 3 & 4 & 5 & 6 \\
|
||||
\hline
|
||||
1 & 4.5010 & 0.9038 & 0.3615 & 0.1584 & 0.0548 & 0.0205 \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\end{center}
|
||||
\end{table}
|
13
PCA-lambdacov.tex
Executable file
13
PCA-lambdacov.tex
Executable file
|
@ -0,0 +1,13 @@
|
|||
% latex table generated in R 2.13.1 by xtable 1.7-0 package
|
||||
% Thu Apr 12 21:52:52 2012
|
||||
\begin{table}[ht]
|
||||
\begin{center}
|
||||
\begin{tabular}{rrrrrrr}
|
||||
\hline
|
||||
& 1 & 2 & 3 & 4 & 5 & 6 \\
|
||||
\hline
|
||||
1 & 0.0170 & 0.0025 & 0.0012 & 0.0006 & 0.0002 & 0.0001 \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\end{center}
|
||||
\end{table}
|
397
PCA-observation1.pdf
Executable file
397
PCA-observation1.pdf
Executable file
|
@ -0,0 +1,397 @@
|
|||
%PDF-1.4
|
||||
%<25>â<EFBFBD>ã<EFBFBD>Ï<EFBFBD>Ó\r
|
||||
1 0 obj
|
||||
<<
|
||||
/CreationDate (D:20120412215252)
|
||||
/ModDate (D:20120412215252)
|
||||
/Title (R Graphics Output)
|
||||
/Producer (R 2.13.1)
|
||||
/Creator (R)
|
||||
>>
|
||||
endobj
|
||||
2 0 obj
|
||||
<<
|
||||
/Type /Catalog
|
||||
/Pages 3 0 R
|
||||
>>
|
||||
endobj
|
||||
7 0 obj
|
||||
<<
|
||||
/Type /Page
|
||||
/Parent 3 0 R
|
||||
/Contents 8 0 R
|
||||
/Resources 4 0 R
|
||||
>>
|
||||
endobj
|
||||
8 0 obj
|
||||
<<
|
||||
/Length 9 0 R
|
||||
>>
|
||||
stream
|
||||
1 J 1 j q
|
||||
Q q 59.04 73.44 414.72 371.52 re W n
|
||||
/sRGB CS 0.000 0.000 0.000 SCN
|
||||
0.75 w
|
||||
[] 0 d
|
||||
1 J
|
||||
1 j
|
||||
10.00 M
|
||||
74.40 87.20 m
|
||||
96.99 218.44 l
|
||||
109.90 225.00 l
|
||||
135.71 186.62 l
|
||||
200.25 311.89 l
|
||||
458.40 431.20 l
|
||||
S
|
||||
Q q
|
||||
/sRGB CS 0.000 0.000 0.000 SCN
|
||||
0.75 w
|
||||
[] 0 d
|
||||
1 J
|
||||
1 j
|
||||
10.00 M
|
||||
71.17 73.44 m 458.40 73.44 l S
|
||||
71.17 73.44 m 71.17 66.24 l S
|
||||
135.71 73.44 m 135.71 66.24 l S
|
||||
200.25 73.44 m 200.25 66.24 l S
|
||||
264.79 73.44 m 264.79 66.24 l S
|
||||
329.32 73.44 m 329.32 66.24 l S
|
||||
393.86 73.44 m 393.86 66.24 l S
|
||||
458.40 73.44 m 458.40 66.24 l S
|
||||
BT
|
||||
/sRGB cs 0.000 0.000 0.000 scn
|
||||
/F2 1 Tf 12.00 0.00 -0.00 12.00 67.84 47.52 Tm (0) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 12.00 0.00 -0.00 12.00 132.37 47.52 Tm (5) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 12.00 0.00 -0.00 12.00 193.58 47.52 Tm (10) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 12.00 0.00 -0.00 12.00 258.11 47.52 Tm (15) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 12.00 0.00 -0.00 12.00 322.65 47.52 Tm (20) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 12.00 0.00 -0.00 12.00 387.19 47.52 Tm (25) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 12.00 0.00 -0.00 12.00 451.73 47.52 Tm (30) Tj
|
||||
ET
|
||||
59.04 164.75 m 59.04 363.59 l S
|
||||
59.04 164.75 m 51.84 164.75 l S
|
||||
59.04 264.17 m 51.84 264.17 l S
|
||||
59.04 363.59 m 51.84 363.59 l S
|
||||
BT
|
||||
/F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 153.07 Tm (7.90) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 252.50 Tm (7.95) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 351.92 Tm (8.00) Tj
|
||||
ET
|
||||
59.04 73.44 m
|
||||
473.76 73.44 l
|
||||
473.76 444.96 l
|
||||
59.04 444.96 l
|
||||
59.04 73.44 l
|
||||
S
|
||||
Q q
|
||||
BT
|
||||
/sRGB cs 0.000 0.000 0.000 scn
|
||||
/F2 1 Tf 12.00 0.00 -0.00 12.00 255.07 18.72 Tm (time) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 0.00 12.00 -12.00 0.00 12.96 243.19 Tm (yc[1, ]) Tj
|
||||
ET
|
||||
Q q 59.04 73.44 414.72 371.52 re W n
|
||||
/sRGB CS 1.000 0.000 0.000 SCN
|
||||
0.75 w
|
||||
[] 0 d
|
||||
1 J
|
||||
1 j
|
||||
10.00 M
|
||||
74.40 87.20 m
|
||||
96.99 218.44 l
|
||||
119.58 212.60 l
|
||||
142.16 182.15 l
|
||||
164.75 201.49 l
|
||||
187.34 263.40 l
|
||||
209.93 352.39 l
|
||||
232.52 456.04 l
|
||||
242.40 504.00 l
|
||||
S
|
||||
450.78 504.00 m
|
||||
458.40 431.20 l
|
||||
S
|
||||
Q
|
||||
endstream
|
||||
endobj
|
||||
9 0 obj
|
||||
1822
|
||||
endobj
|
||||
3 0 obj
|
||||
<<
|
||||
/Type /Pages
|
||||
/Kids [
|
||||
7 0 R
|
||||
]
|
||||
/Count 1
|
||||
/MediaBox [0 0 504 504]
|
||||
>>
|
||||
endobj
|
||||
4 0 obj
|
||||
<<
|
||||
/ProcSet [/PDF /Text]
|
||||
/Font <</F2 11 0 R >>
|
||||
/ExtGState << >>
|
||||
/ColorSpace << /sRGB 5 0 R >>
|
||||
>>
|
||||
endobj
|
||||
5 0 obj
|
||||
[/ICCBased 6 0 R]
|
||||
endobj
|
||||
6 0 obj
|
||||
<< /N 3 /Alternate /DeviceRGB /Length 9433 /Filter /ASCIIHexDecode >>
|
||||
stream
|
||||
00 00 0c 48 4c 69 6e 6f 02 10 00 00 6d 6e 74 72
|
||||
52 47 42 20 58 59 5a 20 07 ce 00 02 00 09 00 06
|
||||
00 31 00 00 61 63 73 70 4d 53 46 54 00 00 00 00
|
||||
49 45 43 20 73 52 47 42 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 f6 d6 00 01 00 00 00 00 d3 2d
|
||||
48 50 20 20 00 00 00 00 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
|
||||
00 00 00 11 63 70 72 74 00 00 01 50 00 00 00 33
|
||||
64 65 73 63 00 00 01 84 00 00 00 6c 77 74 70 74
|
||||
00 00 01 f0 00 00 00 14 62 6b 70 74 00 00 02 04
|
||||
00 00 00 14 72 58 59 5a 00 00 02 18 00 00 00 14
|
||||
67 58 59 5a 00 00 02 2c 00 00 00 14 62 58 59 5a
|
||||
00 00 02 40 00 00 00 14 64 6d 6e 64 00 00 02 54
|
||||
00 00 00 70 64 6d 64 64 00 00 02 c4 00 00 00 88
|
||||
76 75 65 64 00 00 03 4c 00 00 00 86 76 69 65 77
|
||||
00 00 03 d4 00 00 00 24 6c 75 6d 69 00 00 03 f8
|
||||
00 00 00 14 6d 65 61 73 00 00 04 0c 00 00 00 24
|
||||
74 65 63 68 00 00 04 30 00 00 00 0c 72 54 52 43
|
||||
00 00 04 3c 00 00 08 0c 67 54 52 43 00 00 04 3c
|
||||
00 00 08 0c 62 54 52 43 00 00 04 3c 00 00 08 0c
|
||||
74 65 78 74 00 00 00 00 43 6f 70 79 72 69 67 68
|
||||
74 20 28 63 29 20 31 39 39 38 20 48 65 77 6c 65
|
||||
74 74 2d 50 61 63 6b 61 72 64 20 43 6f 6d 70 61
|
||||
6e 79 00 00 64 65 73 63 00 00 00 00 00 00 00 12
|
||||
73 52 47 42 20 49 45 43 36 31 39 36 36 2d 32 2e
|
||||
31 00 00 00 00 00 00 00 00 00 00 00 12 73 52 47
|
||||
42 20 49 45 43 36 31 39 36 36 2d 32 2e 31 00 00
|
||||
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
|
||||
58 59 5a 20 00 00 00 00 00 00 f3 51 00 01 00 00
|
||||
00 01 16 cc 58 59 5a 20 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 00 00 58 59 5a 20 00 00 00 00
|
||||
00 00 6f a2 00 00 38 f5 00 00 03 90 58 59 5a 20
|
||||
00 00 00 00 00 00 62 99 00 00 b7 85 00 00 18 da
|
||||
58 59 5a 20 00 00 00 00 00 00 24 a0 00 00 0f 84
|
||||
00 00 b6 cf 64 65 73 63 00 00 00 00 00 00 00 16
|
||||
49 45 43 20 68 74 74 70 3a 2f 2f 77 77 77 2e 69
|
||||
65 63 2e 63 68 00 00 00 00 00 00 00 00 00 00 00
|
||||
16 49 45 43 20 68 74 74 70 3a 2f 2f 77 77 77 2e
|
||||
69 65 63 2e 63 68 00 00 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 64 65 73 63 00 00 00 00 00 00 00 2e
|
||||
49 45 43 20 36 31 39 36 36 2d 32 2e 31 20 44 65
|
||||
66 61 75 6c 74 20 52 47 42 20 63 6f 6c 6f 75 72
|
||||
20 73 70 61 63 65 20 2d 20 73 52 47 42 00 00 00
|
||||
00 00 00 00 00 00 00 00 2e 49 45 43 20 36 31 39
|
||||
36 36 2d 32 2e 31 20 44 65 66 61 75 6c 74 20 52
|
||||
47 42 20 63 6f 6c 6f 75 72 20 73 70 61 63 65 20
|
||||
2d 20 73 52 47 42 00 00 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 00 00 00 00 00 00 64 65 73 63
|
||||
00 00 00 00 00 00 00 2c 52 65 66 65 72 65 6e 63
|
||||
65 20 56 69 65 77 69 6e 67 20 43 6f 6e 64 69 74
|
||||
69 6f 6e 20 69 6e 20 49 45 43 36 31 39 36 36 2d
|
||||
32 2e 31 00 00 00 00 00 00 00 00 00 00 00 2c 52
|
||||
65 66 65 72 65 6e 63 65 20 56 69 65 77 69 6e 67
|
||||
20 43 6f 6e 64 69 74 69 6f 6e 20 69 6e 20 49 45
|
||||
43 36 31 39 36 36 2d 32 2e 31 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 76 69 65 77 00 00 00 00 00 13 a4 fe
|
||||
00 14 5f 2e 00 10 cf 14 00 03 ed cc 00 04 13 0b
|
||||
00 03 5c 9e 00 00 00 01 58 59 5a 20 00 00 00 00
|
||||
00 4c 09 56 00 50 00 00 00 57 1f e7 6d 65 61 73
|
||||
00 00 00 00 00 00 00 01 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 00 00 00 00 02 8f 00 00 00 02
|
||||
73 69 67 20 00 00 00 00 43 52 54 20 63 75 72 76
|
||||
00 00 00 00 00 00 04 00 00 00 00 05 00 0a 00 0f
|
||||
00 14 00 19 00 1e 00 23 00 28 00 2d 00 32 00 37
|
||||
00 3b 00 40 00 45 00 4a 00 4f 00 54 00 59 00 5e
|
||||
00 63 00 68 00 6d 00 72 00 77 00 7c 00 81 00 86
|
||||
00 8b 00 90 00 95 00 9a 00 9f 00 a4 00 a9 00 ae
|
||||
00 b2 00 b7 00 bc 00 c1 00 c6 00 cb 00 d0 00 d5
|
||||
00 db 00 e0 00 e5 00 eb 00 f0 00 f6 00 fb 01 01
|
||||
01 07 01 0d 01 13 01 19 01 1f 01 25 01 2b 01 32
|
||||
01 38 01 3e 01 45 01 4c 01 52 01 59 01 60 01 67
|
||||
01 6e 01 75 01 7c 01 83 01 8b 01 92 01 9a 01 a1
|
||||
01 a9 01 b1 01 b9 01 c1 01 c9 01 d1 01 d9 01 e1
|
||||
01 e9 01 f2 01 fa 02 03 02 0c 02 14 02 1d 02 26
|
||||
02 2f 02 38 02 41 02 4b 02 54 02 5d 02 67 02 71
|
||||
02 7a 02 84 02 8e 02 98 02 a2 02 ac 02 b6 02 c1
|
||||
02 cb 02 d5 02 e0 02 eb 02 f5 03 00 03 0b 03 16
|
||||
03 21 03 2d 03 38 03 43 03 4f 03 5a 03 66 03 72
|
||||
03 7e 03 8a 03 96 03 a2 03 ae 03 ba 03 c7 03 d3
|
||||
03 e0 03 ec 03 f9 04 06 04 13 04 20 04 2d 04 3b
|
||||
04 48 04 55 04 63 04 71 04 7e 04 8c 04 9a 04 a8
|
||||
04 b6 04 c4 04 d3 04 e1 04 f0 04 fe 05 0d 05 1c
|
||||
05 2b 05 3a 05 49 05 58 05 67 05 77 05 86 05 96
|
||||
05 a6 05 b5 05 c5 05 d5 05 e5 05 f6 06 06 06 16
|
||||
06 27 06 37 06 48 06 59 06 6a 06 7b 06 8c 06 9d
|
||||
06 af 06 c0 06 d1 06 e3 06 f5 07 07 07 19 07 2b
|
||||
07 3d 07 4f 07 61 07 74 07 86 07 99 07 ac 07 bf
|
||||
07 d2 07 e5 07 f8 08 0b 08 1f 08 32 08 46 08 5a
|
||||
08 6e 08 82 08 96 08 aa 08 be 08 d2 08 e7 08 fb
|
||||
09 10 09 25 09 3a 09 4f 09 64 09 79 09 8f 09 a4
|
||||
09 ba 09 cf 09 e5 09 fb 0a 11 0a 27 0a 3d 0a 54
|
||||
0a 6a 0a 81 0a 98 0a ae 0a c5 0a dc 0a f3 0b 0b
|
||||
0b 22 0b 39 0b 51 0b 69 0b 80 0b 98 0b b0 0b c8
|
||||
0b e1 0b f9 0c 12 0c 2a 0c 43 0c 5c 0c 75 0c 8e
|
||||
0c a7 0c c0 0c d9 0c f3 0d 0d 0d 26 0d 40 0d 5a
|
||||
0d 74 0d 8e 0d a9 0d c3 0d de 0d f8 0e 13 0e 2e
|
||||
0e 49 0e 64 0e 7f 0e 9b 0e b6 0e d2 0e ee 0f 09
|
||||
0f 25 0f 41 0f 5e 0f 7a 0f 96 0f b3 0f cf 0f ec
|
||||
10 09 10 26 10 43 10 61 10 7e 10 9b 10 b9 10 d7
|
||||
10 f5 11 13 11 31 11 4f 11 6d 11 8c 11 aa 11 c9
|
||||
11 e8 12 07 12 26 12 45 12 64 12 84 12 a3 12 c3
|
||||
12 e3 13 03 13 23 13 43 13 63 13 83 13 a4 13 c5
|
||||
13 e5 14 06 14 27 14 49 14 6a 14 8b 14 ad 14 ce
|
||||
14 f0 15 12 15 34 15 56 15 78 15 9b 15 bd 15 e0
|
||||
16 03 16 26 16 49 16 6c 16 8f 16 b2 16 d6 16 fa
|
||||
17 1d 17 41 17 65 17 89 17 ae 17 d2 17 f7 18 1b
|
||||
18 40 18 65 18 8a 18 af 18 d5 18 fa 19 20 19 45
|
||||
19 6b 19 91 19 b7 19 dd 1a 04 1a 2a 1a 51 1a 77
|
||||
1a 9e 1a c5 1a ec 1b 14 1b 3b 1b 63 1b 8a 1b b2
|
||||
1b da 1c 02 1c 2a 1c 52 1c 7b 1c a3 1c cc 1c f5
|
||||
1d 1e 1d 47 1d 70 1d 99 1d c3 1d ec 1e 16 1e 40
|
||||
1e 6a 1e 94 1e be 1e e9 1f 13 1f 3e 1f 69 1f 94
|
||||
1f bf 1f ea 20 15 20 41 20 6c 20 98 20 c4 20 f0
|
||||
21 1c 21 48 21 75 21 a1 21 ce 21 fb 22 27 22 55
|
||||
22 82 22 af 22 dd 23 0a 23 38 23 66 23 94 23 c2
|
||||
23 f0 24 1f 24 4d 24 7c 24 ab 24 da 25 09 25 38
|
||||
25 68 25 97 25 c7 25 f7 26 27 26 57 26 87 26 b7
|
||||
26 e8 27 18 27 49 27 7a 27 ab 27 dc 28 0d 28 3f
|
||||
28 71 28 a2 28 d4 29 06 29 38 29 6b 29 9d 29 d0
|
||||
2a 02 2a 35 2a 68 2a 9b 2a cf 2b 02 2b 36 2b 69
|
||||
2b 9d 2b d1 2c 05 2c 39 2c 6e 2c a2 2c d7 2d 0c
|
||||
2d 41 2d 76 2d ab 2d e1 2e 16 2e 4c 2e 82 2e b7
|
||||
2e ee 2f 24 2f 5a 2f 91 2f c7 2f fe 30 35 30 6c
|
||||
30 a4 30 db 31 12 31 4a 31 82 31 ba 31 f2 32 2a
|
||||
32 63 32 9b 32 d4 33 0d 33 46 33 7f 33 b8 33 f1
|
||||
34 2b 34 65 34 9e 34 d8 35 13 35 4d 35 87 35 c2
|
||||
35 fd 36 37 36 72 36 ae 36 e9 37 24 37 60 37 9c
|
||||
37 d7 38 14 38 50 38 8c 38 c8 39 05 39 42 39 7f
|
||||
39 bc 39 f9 3a 36 3a 74 3a b2 3a ef 3b 2d 3b 6b
|
||||
3b aa 3b e8 3c 27 3c 65 3c a4 3c e3 3d 22 3d 61
|
||||
3d a1 3d e0 3e 20 3e 60 3e a0 3e e0 3f 21 3f 61
|
||||
3f a2 3f e2 40 23 40 64 40 a6 40 e7 41 29 41 6a
|
||||
41 ac 41 ee 42 30 42 72 42 b5 42 f7 43 3a 43 7d
|
||||
43 c0 44 03 44 47 44 8a 44 ce 45 12 45 55 45 9a
|
||||
45 de 46 22 46 67 46 ab 46 f0 47 35 47 7b 47 c0
|
||||
48 05 48 4b 48 91 48 d7 49 1d 49 63 49 a9 49 f0
|
||||
4a 37 4a 7d 4a c4 4b 0c 4b 53 4b 9a 4b e2 4c 2a
|
||||
4c 72 4c ba 4d 02 4d 4a 4d 93 4d dc 4e 25 4e 6e
|
||||
4e b7 4f 00 4f 49 4f 93 4f dd 50 27 50 71 50 bb
|
||||
51 06 51 50 51 9b 51 e6 52 31 52 7c 52 c7 53 13
|
||||
53 5f 53 aa 53 f6 54 42 54 8f 54 db 55 28 55 75
|
||||
55 c2 56 0f 56 5c 56 a9 56 f7 57 44 57 92 57 e0
|
||||
58 2f 58 7d 58 cb 59 1a 59 69 59 b8 5a 07 5a 56
|
||||
5a a6 5a f5 5b 45 5b 95 5b e5 5c 35 5c 86 5c d6
|
||||
5d 27 5d 78 5d c9 5e 1a 5e 6c 5e bd 5f 0f 5f 61
|
||||
5f b3 60 05 60 57 60 aa 60 fc 61 4f 61 a2 61 f5
|
||||
62 49 62 9c 62 f0 63 43 63 97 63 eb 64 40 64 94
|
||||
64 e9 65 3d 65 92 65 e7 66 3d 66 92 66 e8 67 3d
|
||||
67 93 67 e9 68 3f 68 96 68 ec 69 43 69 9a 69 f1
|
||||
6a 48 6a 9f 6a f7 6b 4f 6b a7 6b ff 6c 57 6c af
|
||||
6d 08 6d 60 6d b9 6e 12 6e 6b 6e c4 6f 1e 6f 78
|
||||
6f d1 70 2b 70 86 70 e0 71 3a 71 95 71 f0 72 4b
|
||||
72 a6 73 01 73 5d 73 b8 74 14 74 70 74 cc 75 28
|
||||
75 85 75 e1 76 3e 76 9b 76 f8 77 56 77 b3 78 11
|
||||
78 6e 78 cc 79 2a 79 89 79 e7 7a 46 7a a5 7b 04
|
||||
7b 63 7b c2 7c 21 7c 81 7c e1 7d 41 7d a1 7e 01
|
||||
7e 62 7e c2 7f 23 7f 84 7f e5 80 47 80 a8 81 0a
|
||||
81 6b 81 cd 82 30 82 92 82 f4 83 57 83 ba 84 1d
|
||||
84 80 84 e3 85 47 85 ab 86 0e 86 72 86 d7 87 3b
|
||||
87 9f 88 04 88 69 88 ce 89 33 89 99 89 fe 8a 64
|
||||
8a ca 8b 30 8b 96 8b fc 8c 63 8c ca 8d 31 8d 98
|
||||
8d ff 8e 66 8e ce 8f 36 8f 9e 90 06 90 6e 90 d6
|
||||
91 3f 91 a8 92 11 92 7a 92 e3 93 4d 93 b6 94 20
|
||||
94 8a 94 f4 95 5f 95 c9 96 34 96 9f 97 0a 97 75
|
||||
97 e0 98 4c 98 b8 99 24 99 90 99 fc 9a 68 9a d5
|
||||
9b 42 9b af 9c 1c 9c 89 9c f7 9d 64 9d d2 9e 40
|
||||
9e ae 9f 1d 9f 8b 9f fa a0 69 a0 d8 a1 47 a1 b6
|
||||
a2 26 a2 96 a3 06 a3 76 a3 e6 a4 56 a4 c7 a5 38
|
||||
a5 a9 a6 1a a6 8b a6 fd a7 6e a7 e0 a8 52 a8 c4
|
||||
a9 37 a9 a9 aa 1c aa 8f ab 02 ab 75 ab e9 ac 5c
|
||||
ac d0 ad 44 ad b8 ae 2d ae a1 af 16 af 8b b0 00
|
||||
b0 75 b0 ea b1 60 b1 d6 b2 4b b2 c2 b3 38 b3 ae
|
||||
b4 25 b4 9c b5 13 b5 8a b6 01 b6 79 b6 f0 b7 68
|
||||
b7 e0 b8 59 b8 d1 b9 4a b9 c2 ba 3b ba b5 bb 2e
|
||||
bb a7 bc 21 bc 9b bd 15 bd 8f be 0a be 84 be ff
|
||||
bf 7a bf f5 c0 70 c0 ec c1 67 c1 e3 c2 5f c2 db
|
||||
c3 58 c3 d4 c4 51 c4 ce c5 4b c5 c8 c6 46 c6 c3
|
||||
c7 41 c7 bf c8 3d c8 bc c9 3a c9 b9 ca 38 ca b7
|
||||
cb 36 cb b6 cc 35 cc b5 cd 35 cd b5 ce 36 ce b6
|
||||
cf 37 cf b8 d0 39 d0 ba d1 3c d1 be d2 3f d2 c1
|
||||
d3 44 d3 c6 d4 49 d4 cb d5 4e d5 d1 d6 55 d6 d8
|
||||
d7 5c d7 e0 d8 64 d8 e8 d9 6c d9 f1 da 76 da fb
|
||||
db 80 dc 05 dc 8a dd 10 dd 96 de 1c de a2 df 29
|
||||
df af e0 36 e0 bd e1 44 e1 cc e2 53 e2 db e3 63
|
||||
e3 eb e4 73 e4 fc e5 84 e6 0d e6 96 e7 1f e7 a9
|
||||
e8 32 e8 bc e9 46 e9 d0 ea 5b ea e5 eb 70 eb fb
|
||||
ec 86 ed 11 ed 9c ee 28 ee b4 ef 40 ef cc f0 58
|
||||
f0 e5 f1 72 f1 ff f2 8c f3 19 f3 a7 f4 34 f4 c2
|
||||
f5 50 f5 de f6 6d f6 fb f7 8a f8 19 f8 a8 f9 38
|
||||
f9 c7 fa 57 fa e7 fb 77 fc 07 fc 98 fd 29 fd ba
|
||||
fe 4b fe dc ff 6d ff ff >
|
||||
endstream
|
||||
endobj
|
||||
10 0 obj
|
||||
<<
|
||||
/Type /Encoding
|
||||
/BaseEncoding /WinAnsiEncoding
|
||||
/Differences [ 45/minus 96/quoteleft
|
||||
144/dotlessi /grave /acute /circumflex /tilde /macron /breve /dotaccent
|
||||
/dieresis /.notdef /ring /cedilla /.notdef /hungarumlaut /ogonek /caron /space]
|
||||
>>
|
||||
endobj
|
||||
11 0 obj <<
|
||||
/Type /Font
|
||||
/Subtype /Type1
|
||||
/Name /F2
|
||||
/BaseFont /Helvetica
|
||||
/Encoding 10 0 R
|
||||
>> endobj
|
||||
xref
|
||||
0 12
|
||||
0000000000 65535 f
|
||||
0000000021 00000 n
|
||||
0000000164 00000 n
|
||||
0000002187 00000 n
|
||||
0000002270 00000 n
|
||||
0000002382 00000 n
|
||||
0000002415 00000 n
|
||||
0000000213 00000 n
|
||||
0000000293 00000 n
|
||||
0000002167 00000 n
|
||||
0000011951 00000 n
|
||||
0000012209 00000 n
|
||||
trailer
|
||||
<<
|
||||
/Size 12
|
||||
/Info 1 0 R
|
||||
/Root 2 0 R
|
||||
>>
|
||||
startxref
|
||||
12307
|
||||
%%EOF
|
13
PCA-prcorr.tex
Executable file
13
PCA-prcorr.tex
Executable file
|
@ -0,0 +1,13 @@
|
|||
% latex table generated in R 2.13.1 by xtable 1.7-0 package
|
||||
% Thu Apr 12 21:52:52 2012
|
||||
\begin{table}[ht]
|
||||
\begin{center}
|
||||
\begin{tabular}{rrrrrrr}
|
||||
\hline
|
||||
& 1 & 2 & 3 & 4 & 5 & 6 \\
|
||||
\hline
|
||||
1 & 0.7502 & 0.1506 & 0.0602 & 0.0264 & 0.0091 & 0.0034 \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\end{center}
|
||||
\end{table}
|
13
PCA-prcov.tex
Executable file
13
PCA-prcov.tex
Executable file
|
@ -0,0 +1,13 @@
|
|||
% latex table generated in R 2.13.1 by xtable 1.7-0 package
|
||||
% Thu Apr 12 21:52:52 2012
|
||||
\begin{table}[ht]
|
||||
\begin{center}
|
||||
\begin{tabular}{rrrrrrr}
|
||||
\hline
|
||||
& 1 & 2 & 3 & 4 & 5 & 6 \\
|
||||
\hline
|
||||
1 & 0.7846 & 0.1167 & 0.0576 & 0.0278 & 0.0095 & 0.0037 \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\end{center}
|
||||
\end{table}
|
69508
PCA-score.pdf
Executable file
69508
PCA-score.pdf
Executable file
File diff suppressed because it is too large
Load diff
35316
PCA-tseries.pdf
Executable file
35316
PCA-tseries.pdf
Executable file
File diff suppressed because it is too large
Load diff
404
PCA-verif-princomp.pdf
Executable file
404
PCA-verif-princomp.pdf
Executable file
|
@ -0,0 +1,404 @@
|
|||
%PDF-1.4
|
||||
%<25>â<EFBFBD>ã<EFBFBD>Ï<EFBFBD>Ó\r
|
||||
1 0 obj
|
||||
<<
|
||||
/CreationDate (D:20120412215252)
|
||||
/ModDate (D:20120412215252)
|
||||
/Title (R Graphics Output)
|
||||
/Producer (R 2.13.1)
|
||||
/Creator (R)
|
||||
>>
|
||||
endobj
|
||||
2 0 obj
|
||||
<<
|
||||
/Type /Catalog
|
||||
/Pages 3 0 R
|
||||
>>
|
||||
endobj
|
||||
7 0 obj
|
||||
<<
|
||||
/Type /Page
|
||||
/Parent 3 0 R
|
||||
/Contents 8 0 R
|
||||
/Resources 4 0 R
|
||||
>>
|
||||
endobj
|
||||
8 0 obj
|
||||
<<
|
||||
/Length 9 0 R
|
||||
>>
|
||||
stream
|
||||
1 J 1 j q
|
||||
Q q 59.04 73.44 414.72 371.52 re W n
|
||||
/sRGB CS 0.000 0.000 0.000 SCN
|
||||
0.75 w
|
||||
[] 0 d
|
||||
1 J
|
||||
1 j
|
||||
10.00 M
|
||||
76.22 424.23 m 149.38 143.93 l S
|
||||
158.02 134.65 m 221.18 113.26 l S
|
||||
235.10 109.73 m 297.70 99.02 l S
|
||||
311.96 97.06 m 374.44 90.47 l S
|
||||
388.80 89.48 m 451.20 87.44 l S
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 71.44 428.60 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 148.24 134.37 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 225.04 108.35 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 301.84 95.22 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 378.64 87.12 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
BT
|
||||
/F1 1 Tf 1 Tr 7.48 0 0 7.48 455.44 84.60 Tm (l) Tj 0 Tr
|
||||
ET
|
||||
Q q
|
||||
BT
|
||||
/sRGB cs 0.000 0.000 0.000 scn
|
||||
/F3 1 Tf 14.00 0.00 -0.00 14.00 224.78 469.45 Tm (yc.princomp) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 0.00 12.00 -12.00 0.00 12.96 232.85 Tm [(V) 70 (ar) -15 (iances)] TJ
|
||||
ET
|
||||
Q q
|
||||
/sRGB CS 0.000 0.000 0.000 SCN
|
||||
0.75 w
|
||||
[] 0 d
|
||||
1 J
|
||||
1 j
|
||||
10.00 M
|
||||
59.04 85.55 m 59.04 390.38 l S
|
||||
59.04 85.55 m 51.84 85.55 l S
|
||||
59.04 187.16 m 51.84 187.16 l S
|
||||
59.04 288.77 m 51.84 288.77 l S
|
||||
59.04 390.38 m 51.84 390.38 l S
|
||||
BT
|
||||
/sRGB cs 0.000 0.000 0.000 scn
|
||||
/F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 70.54 Tm (0.000) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 172.15 Tm (0.005) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 273.76 Tm (0.010) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 375.37 Tm (0.015) Tj
|
||||
ET
|
||||
74.40 73.44 m 458.40 73.44 l S
|
||||
74.40 73.44 m 74.40 66.24 l S
|
||||
151.20 73.44 m 151.20 66.24 l S
|
||||
228.00 73.44 m 228.00 66.24 l S
|
||||
304.80 73.44 m 304.80 66.24 l S
|
||||
381.60 73.44 m 381.60 66.24 l S
|
||||
458.40 73.44 m 458.40 66.24 l S
|
||||
BT
|
||||
/F2 1 Tf 12.00 0.00 -0.00 12.00 71.06 47.52 Tm (1) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 12.00 0.00 -0.00 12.00 147.86 47.52 Tm (2) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 12.00 0.00 -0.00 12.00 224.66 47.52 Tm (3) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 12.00 0.00 -0.00 12.00 301.46 47.52 Tm (4) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 12.00 0.00 -0.00 12.00 378.26 47.52 Tm (5) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 12.00 0.00 -0.00 12.00 455.06 47.52 Tm (6) Tj
|
||||
ET
|
||||
Q
|
||||
endstream
|
||||
endobj
|
||||
9 0 obj
|
||||
1937
|
||||
endobj
|
||||
3 0 obj
|
||||
<<
|
||||
/Type /Pages
|
||||
/Kids [
|
||||
7 0 R
|
||||
]
|
||||
/Count 1
|
||||
/MediaBox [0 0 504 504]
|
||||
>>
|
||||
endobj
|
||||
4 0 obj
|
||||
<<
|
||||
/ProcSet [/PDF /Text]
|
||||
/Font << /F1 11 0 R /F2 12 0 R /F3 13 0 R >>
|
||||
/ExtGState << >>
|
||||
/ColorSpace << /sRGB 5 0 R >>
|
||||
>>
|
||||
endobj
|
||||
5 0 obj
|
||||
[/ICCBased 6 0 R]
|
||||
endobj
|
||||
6 0 obj
|
||||
<< /N 3 /Alternate /DeviceRGB /Length 9433 /Filter /ASCIIHexDecode >>
|
||||
stream
|
||||
00 00 0c 48 4c 69 6e 6f 02 10 00 00 6d 6e 74 72
|
||||
52 47 42 20 58 59 5a 20 07 ce 00 02 00 09 00 06
|
||||
00 31 00 00 61 63 73 70 4d 53 46 54 00 00 00 00
|
||||
49 45 43 20 73 52 47 42 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 f6 d6 00 01 00 00 00 00 d3 2d
|
||||
48 50 20 20 00 00 00 00 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
|
||||
00 00 00 11 63 70 72 74 00 00 01 50 00 00 00 33
|
||||
64 65 73 63 00 00 01 84 00 00 00 6c 77 74 70 74
|
||||
00 00 01 f0 00 00 00 14 62 6b 70 74 00 00 02 04
|
||||
00 00 00 14 72 58 59 5a 00 00 02 18 00 00 00 14
|
||||
67 58 59 5a 00 00 02 2c 00 00 00 14 62 58 59 5a
|
||||
00 00 02 40 00 00 00 14 64 6d 6e 64 00 00 02 54
|
||||
00 00 00 70 64 6d 64 64 00 00 02 c4 00 00 00 88
|
||||
76 75 65 64 00 00 03 4c 00 00 00 86 76 69 65 77
|
||||
00 00 03 d4 00 00 00 24 6c 75 6d 69 00 00 03 f8
|
||||
00 00 00 14 6d 65 61 73 00 00 04 0c 00 00 00 24
|
||||
74 65 63 68 00 00 04 30 00 00 00 0c 72 54 52 43
|
||||
00 00 04 3c 00 00 08 0c 67 54 52 43 00 00 04 3c
|
||||
00 00 08 0c 62 54 52 43 00 00 04 3c 00 00 08 0c
|
||||
74 65 78 74 00 00 00 00 43 6f 70 79 72 69 67 68
|
||||
74 20 28 63 29 20 31 39 39 38 20 48 65 77 6c 65
|
||||
74 74 2d 50 61 63 6b 61 72 64 20 43 6f 6d 70 61
|
||||
6e 79 00 00 64 65 73 63 00 00 00 00 00 00 00 12
|
||||
73 52 47 42 20 49 45 43 36 31 39 36 36 2d 32 2e
|
||||
31 00 00 00 00 00 00 00 00 00 00 00 12 73 52 47
|
||||
42 20 49 45 43 36 31 39 36 36 2d 32 2e 31 00 00
|
||||
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
|
||||
58 59 5a 20 00 00 00 00 00 00 f3 51 00 01 00 00
|
||||
00 01 16 cc 58 59 5a 20 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 00 00 58 59 5a 20 00 00 00 00
|
||||
00 00 6f a2 00 00 38 f5 00 00 03 90 58 59 5a 20
|
||||
00 00 00 00 00 00 62 99 00 00 b7 85 00 00 18 da
|
||||
58 59 5a 20 00 00 00 00 00 00 24 a0 00 00 0f 84
|
||||
00 00 b6 cf 64 65 73 63 00 00 00 00 00 00 00 16
|
||||
49 45 43 20 68 74 74 70 3a 2f 2f 77 77 77 2e 69
|
||||
65 63 2e 63 68 00 00 00 00 00 00 00 00 00 00 00
|
||||
16 49 45 43 20 68 74 74 70 3a 2f 2f 77 77 77 2e
|
||||
69 65 63 2e 63 68 00 00 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 64 65 73 63 00 00 00 00 00 00 00 2e
|
||||
49 45 43 20 36 31 39 36 36 2d 32 2e 31 20 44 65
|
||||
66 61 75 6c 74 20 52 47 42 20 63 6f 6c 6f 75 72
|
||||
20 73 70 61 63 65 20 2d 20 73 52 47 42 00 00 00
|
||||
00 00 00 00 00 00 00 00 2e 49 45 43 20 36 31 39
|
||||
36 36 2d 32 2e 31 20 44 65 66 61 75 6c 74 20 52
|
||||
47 42 20 63 6f 6c 6f 75 72 20 73 70 61 63 65 20
|
||||
2d 20 73 52 47 42 00 00 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 00 00 00 00 00 00 64 65 73 63
|
||||
00 00 00 00 00 00 00 2c 52 65 66 65 72 65 6e 63
|
||||
65 20 56 69 65 77 69 6e 67 20 43 6f 6e 64 69 74
|
||||
69 6f 6e 20 69 6e 20 49 45 43 36 31 39 36 36 2d
|
||||
32 2e 31 00 00 00 00 00 00 00 00 00 00 00 2c 52
|
||||
65 66 65 72 65 6e 63 65 20 56 69 65 77 69 6e 67
|
||||
20 43 6f 6e 64 69 74 69 6f 6e 20 69 6e 20 49 45
|
||||
43 36 31 39 36 36 2d 32 2e 31 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 76 69 65 77 00 00 00 00 00 13 a4 fe
|
||||
00 14 5f 2e 00 10 cf 14 00 03 ed cc 00 04 13 0b
|
||||
00 03 5c 9e 00 00 00 01 58 59 5a 20 00 00 00 00
|
||||
00 4c 09 56 00 50 00 00 00 57 1f e7 6d 65 61 73
|
||||
00 00 00 00 00 00 00 01 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 00 00 00 00 02 8f 00 00 00 02
|
||||
73 69 67 20 00 00 00 00 43 52 54 20 63 75 72 76
|
||||
00 00 00 00 00 00 04 00 00 00 00 05 00 0a 00 0f
|
||||
00 14 00 19 00 1e 00 23 00 28 00 2d 00 32 00 37
|
||||
00 3b 00 40 00 45 00 4a 00 4f 00 54 00 59 00 5e
|
||||
00 63 00 68 00 6d 00 72 00 77 00 7c 00 81 00 86
|
||||
00 8b 00 90 00 95 00 9a 00 9f 00 a4 00 a9 00 ae
|
||||
00 b2 00 b7 00 bc 00 c1 00 c6 00 cb 00 d0 00 d5
|
||||
00 db 00 e0 00 e5 00 eb 00 f0 00 f6 00 fb 01 01
|
||||
01 07 01 0d 01 13 01 19 01 1f 01 25 01 2b 01 32
|
||||
01 38 01 3e 01 45 01 4c 01 52 01 59 01 60 01 67
|
||||
01 6e 01 75 01 7c 01 83 01 8b 01 92 01 9a 01 a1
|
||||
01 a9 01 b1 01 b9 01 c1 01 c9 01 d1 01 d9 01 e1
|
||||
01 e9 01 f2 01 fa 02 03 02 0c 02 14 02 1d 02 26
|
||||
02 2f 02 38 02 41 02 4b 02 54 02 5d 02 67 02 71
|
||||
02 7a 02 84 02 8e 02 98 02 a2 02 ac 02 b6 02 c1
|
||||
02 cb 02 d5 02 e0 02 eb 02 f5 03 00 03 0b 03 16
|
||||
03 21 03 2d 03 38 03 43 03 4f 03 5a 03 66 03 72
|
||||
03 7e 03 8a 03 96 03 a2 03 ae 03 ba 03 c7 03 d3
|
||||
03 e0 03 ec 03 f9 04 06 04 13 04 20 04 2d 04 3b
|
||||
04 48 04 55 04 63 04 71 04 7e 04 8c 04 9a 04 a8
|
||||
04 b6 04 c4 04 d3 04 e1 04 f0 04 fe 05 0d 05 1c
|
||||
05 2b 05 3a 05 49 05 58 05 67 05 77 05 86 05 96
|
||||
05 a6 05 b5 05 c5 05 d5 05 e5 05 f6 06 06 06 16
|
||||
06 27 06 37 06 48 06 59 06 6a 06 7b 06 8c 06 9d
|
||||
06 af 06 c0 06 d1 06 e3 06 f5 07 07 07 19 07 2b
|
||||
07 3d 07 4f 07 61 07 74 07 86 07 99 07 ac 07 bf
|
||||
07 d2 07 e5 07 f8 08 0b 08 1f 08 32 08 46 08 5a
|
||||
08 6e 08 82 08 96 08 aa 08 be 08 d2 08 e7 08 fb
|
||||
09 10 09 25 09 3a 09 4f 09 64 09 79 09 8f 09 a4
|
||||
09 ba 09 cf 09 e5 09 fb 0a 11 0a 27 0a 3d 0a 54
|
||||
0a 6a 0a 81 0a 98 0a ae 0a c5 0a dc 0a f3 0b 0b
|
||||
0b 22 0b 39 0b 51 0b 69 0b 80 0b 98 0b b0 0b c8
|
||||
0b e1 0b f9 0c 12 0c 2a 0c 43 0c 5c 0c 75 0c 8e
|
||||
0c a7 0c c0 0c d9 0c f3 0d 0d 0d 26 0d 40 0d 5a
|
||||
0d 74 0d 8e 0d a9 0d c3 0d de 0d f8 0e 13 0e 2e
|
||||
0e 49 0e 64 0e 7f 0e 9b 0e b6 0e d2 0e ee 0f 09
|
||||
0f 25 0f 41 0f 5e 0f 7a 0f 96 0f b3 0f cf 0f ec
|
||||
10 09 10 26 10 43 10 61 10 7e 10 9b 10 b9 10 d7
|
||||
10 f5 11 13 11 31 11 4f 11 6d 11 8c 11 aa 11 c9
|
||||
11 e8 12 07 12 26 12 45 12 64 12 84 12 a3 12 c3
|
||||
12 e3 13 03 13 23 13 43 13 63 13 83 13 a4 13 c5
|
||||
13 e5 14 06 14 27 14 49 14 6a 14 8b 14 ad 14 ce
|
||||
14 f0 15 12 15 34 15 56 15 78 15 9b 15 bd 15 e0
|
||||
16 03 16 26 16 49 16 6c 16 8f 16 b2 16 d6 16 fa
|
||||
17 1d 17 41 17 65 17 89 17 ae 17 d2 17 f7 18 1b
|
||||
18 40 18 65 18 8a 18 af 18 d5 18 fa 19 20 19 45
|
||||
19 6b 19 91 19 b7 19 dd 1a 04 1a 2a 1a 51 1a 77
|
||||
1a 9e 1a c5 1a ec 1b 14 1b 3b 1b 63 1b 8a 1b b2
|
||||
1b da 1c 02 1c 2a 1c 52 1c 7b 1c a3 1c cc 1c f5
|
||||
1d 1e 1d 47 1d 70 1d 99 1d c3 1d ec 1e 16 1e 40
|
||||
1e 6a 1e 94 1e be 1e e9 1f 13 1f 3e 1f 69 1f 94
|
||||
1f bf 1f ea 20 15 20 41 20 6c 20 98 20 c4 20 f0
|
||||
21 1c 21 48 21 75 21 a1 21 ce 21 fb 22 27 22 55
|
||||
22 82 22 af 22 dd 23 0a 23 38 23 66 23 94 23 c2
|
||||
23 f0 24 1f 24 4d 24 7c 24 ab 24 da 25 09 25 38
|
||||
25 68 25 97 25 c7 25 f7 26 27 26 57 26 87 26 b7
|
||||
26 e8 27 18 27 49 27 7a 27 ab 27 dc 28 0d 28 3f
|
||||
28 71 28 a2 28 d4 29 06 29 38 29 6b 29 9d 29 d0
|
||||
2a 02 2a 35 2a 68 2a 9b 2a cf 2b 02 2b 36 2b 69
|
||||
2b 9d 2b d1 2c 05 2c 39 2c 6e 2c a2 2c d7 2d 0c
|
||||
2d 41 2d 76 2d ab 2d e1 2e 16 2e 4c 2e 82 2e b7
|
||||
2e ee 2f 24 2f 5a 2f 91 2f c7 2f fe 30 35 30 6c
|
||||
30 a4 30 db 31 12 31 4a 31 82 31 ba 31 f2 32 2a
|
||||
32 63 32 9b 32 d4 33 0d 33 46 33 7f 33 b8 33 f1
|
||||
34 2b 34 65 34 9e 34 d8 35 13 35 4d 35 87 35 c2
|
||||
35 fd 36 37 36 72 36 ae 36 e9 37 24 37 60 37 9c
|
||||
37 d7 38 14 38 50 38 8c 38 c8 39 05 39 42 39 7f
|
||||
39 bc 39 f9 3a 36 3a 74 3a b2 3a ef 3b 2d 3b 6b
|
||||
3b aa 3b e8 3c 27 3c 65 3c a4 3c e3 3d 22 3d 61
|
||||
3d a1 3d e0 3e 20 3e 60 3e a0 3e e0 3f 21 3f 61
|
||||
3f a2 3f e2 40 23 40 64 40 a6 40 e7 41 29 41 6a
|
||||
41 ac 41 ee 42 30 42 72 42 b5 42 f7 43 3a 43 7d
|
||||
43 c0 44 03 44 47 44 8a 44 ce 45 12 45 55 45 9a
|
||||
45 de 46 22 46 67 46 ab 46 f0 47 35 47 7b 47 c0
|
||||
48 05 48 4b 48 91 48 d7 49 1d 49 63 49 a9 49 f0
|
||||
4a 37 4a 7d 4a c4 4b 0c 4b 53 4b 9a 4b e2 4c 2a
|
||||
4c 72 4c ba 4d 02 4d 4a 4d 93 4d dc 4e 25 4e 6e
|
||||
4e b7 4f 00 4f 49 4f 93 4f dd 50 27 50 71 50 bb
|
||||
51 06 51 50 51 9b 51 e6 52 31 52 7c 52 c7 53 13
|
||||
53 5f 53 aa 53 f6 54 42 54 8f 54 db 55 28 55 75
|
||||
55 c2 56 0f 56 5c 56 a9 56 f7 57 44 57 92 57 e0
|
||||
58 2f 58 7d 58 cb 59 1a 59 69 59 b8 5a 07 5a 56
|
||||
5a a6 5a f5 5b 45 5b 95 5b e5 5c 35 5c 86 5c d6
|
||||
5d 27 5d 78 5d c9 5e 1a 5e 6c 5e bd 5f 0f 5f 61
|
||||
5f b3 60 05 60 57 60 aa 60 fc 61 4f 61 a2 61 f5
|
||||
62 49 62 9c 62 f0 63 43 63 97 63 eb 64 40 64 94
|
||||
64 e9 65 3d 65 92 65 e7 66 3d 66 92 66 e8 67 3d
|
||||
67 93 67 e9 68 3f 68 96 68 ec 69 43 69 9a 69 f1
|
||||
6a 48 6a 9f 6a f7 6b 4f 6b a7 6b ff 6c 57 6c af
|
||||
6d 08 6d 60 6d b9 6e 12 6e 6b 6e c4 6f 1e 6f 78
|
||||
6f d1 70 2b 70 86 70 e0 71 3a 71 95 71 f0 72 4b
|
||||
72 a6 73 01 73 5d 73 b8 74 14 74 70 74 cc 75 28
|
||||
75 85 75 e1 76 3e 76 9b 76 f8 77 56 77 b3 78 11
|
||||
78 6e 78 cc 79 2a 79 89 79 e7 7a 46 7a a5 7b 04
|
||||
7b 63 7b c2 7c 21 7c 81 7c e1 7d 41 7d a1 7e 01
|
||||
7e 62 7e c2 7f 23 7f 84 7f e5 80 47 80 a8 81 0a
|
||||
81 6b 81 cd 82 30 82 92 82 f4 83 57 83 ba 84 1d
|
||||
84 80 84 e3 85 47 85 ab 86 0e 86 72 86 d7 87 3b
|
||||
87 9f 88 04 88 69 88 ce 89 33 89 99 89 fe 8a 64
|
||||
8a ca 8b 30 8b 96 8b fc 8c 63 8c ca 8d 31 8d 98
|
||||
8d ff 8e 66 8e ce 8f 36 8f 9e 90 06 90 6e 90 d6
|
||||
91 3f 91 a8 92 11 92 7a 92 e3 93 4d 93 b6 94 20
|
||||
94 8a 94 f4 95 5f 95 c9 96 34 96 9f 97 0a 97 75
|
||||
97 e0 98 4c 98 b8 99 24 99 90 99 fc 9a 68 9a d5
|
||||
9b 42 9b af 9c 1c 9c 89 9c f7 9d 64 9d d2 9e 40
|
||||
9e ae 9f 1d 9f 8b 9f fa a0 69 a0 d8 a1 47 a1 b6
|
||||
a2 26 a2 96 a3 06 a3 76 a3 e6 a4 56 a4 c7 a5 38
|
||||
a5 a9 a6 1a a6 8b a6 fd a7 6e a7 e0 a8 52 a8 c4
|
||||
a9 37 a9 a9 aa 1c aa 8f ab 02 ab 75 ab e9 ac 5c
|
||||
ac d0 ad 44 ad b8 ae 2d ae a1 af 16 af 8b b0 00
|
||||
b0 75 b0 ea b1 60 b1 d6 b2 4b b2 c2 b3 38 b3 ae
|
||||
b4 25 b4 9c b5 13 b5 8a b6 01 b6 79 b6 f0 b7 68
|
||||
b7 e0 b8 59 b8 d1 b9 4a b9 c2 ba 3b ba b5 bb 2e
|
||||
bb a7 bc 21 bc 9b bd 15 bd 8f be 0a be 84 be ff
|
||||
bf 7a bf f5 c0 70 c0 ec c1 67 c1 e3 c2 5f c2 db
|
||||
c3 58 c3 d4 c4 51 c4 ce c5 4b c5 c8 c6 46 c6 c3
|
||||
c7 41 c7 bf c8 3d c8 bc c9 3a c9 b9 ca 38 ca b7
|
||||
cb 36 cb b6 cc 35 cc b5 cd 35 cd b5 ce 36 ce b6
|
||||
cf 37 cf b8 d0 39 d0 ba d1 3c d1 be d2 3f d2 c1
|
||||
d3 44 d3 c6 d4 49 d4 cb d5 4e d5 d1 d6 55 d6 d8
|
||||
d7 5c d7 e0 d8 64 d8 e8 d9 6c d9 f1 da 76 da fb
|
||||
db 80 dc 05 dc 8a dd 10 dd 96 de 1c de a2 df 29
|
||||
df af e0 36 e0 bd e1 44 e1 cc e2 53 e2 db e3 63
|
||||
e3 eb e4 73 e4 fc e5 84 e6 0d e6 96 e7 1f e7 a9
|
||||
e8 32 e8 bc e9 46 e9 d0 ea 5b ea e5 eb 70 eb fb
|
||||
ec 86 ed 11 ed 9c ee 28 ee b4 ef 40 ef cc f0 58
|
||||
f0 e5 f1 72 f1 ff f2 8c f3 19 f3 a7 f4 34 f4 c2
|
||||
f5 50 f5 de f6 6d f6 fb f7 8a f8 19 f8 a8 f9 38
|
||||
f9 c7 fa 57 fa e7 fb 77 fc 07 fc 98 fd 29 fd ba
|
||||
fe 4b fe dc ff 6d ff ff >
|
||||
endstream
|
||||
endobj
|
||||
10 0 obj
|
||||
<<
|
||||
/Type /Encoding
|
||||
/BaseEncoding /WinAnsiEncoding
|
||||
/Differences [ 45/minus 96/quoteleft
|
||||
144/dotlessi /grave /acute /circumflex /tilde /macron /breve /dotaccent
|
||||
/dieresis /.notdef /ring /cedilla /.notdef /hungarumlaut /ogonek /caron /space]
|
||||
>>
|
||||
endobj
|
||||
11 0 obj
|
||||
<<
|
||||
/Type /Font
|
||||
/Subtype /Type1
|
||||
/Name /F1
|
||||
/BaseFont /ZapfDingbats
|
||||
>>
|
||||
endobj
|
||||
12 0 obj <<
|
||||
/Type /Font
|
||||
/Subtype /Type1
|
||||
/Name /F2
|
||||
/BaseFont /Helvetica
|
||||
/Encoding 10 0 R
|
||||
>> endobj
|
||||
13 0 obj <<
|
||||
/Type /Font
|
||||
/Subtype /Type1
|
||||
/Name /F3
|
||||
/BaseFont /Helvetica-Bold
|
||||
/Encoding 10 0 R
|
||||
>> endobj
|
||||
xref
|
||||
0 14
|
||||
0000000000 65535 f
|
||||
0000000021 00000 n
|
||||
0000000164 00000 n
|
||||
0000002302 00000 n
|
||||
0000002385 00000 n
|
||||
0000002520 00000 n
|
||||
0000002553 00000 n
|
||||
0000000213 00000 n
|
||||
0000000293 00000 n
|
||||
0000002282 00000 n
|
||||
0000012089 00000 n
|
||||
0000012347 00000 n
|
||||
0000012431 00000 n
|
||||
0000012529 00000 n
|
||||
trailer
|
||||
<<
|
||||
/Size 14
|
||||
/Info 1 0 R
|
||||
/Root 2 0 R
|
||||
>>
|
||||
startxref
|
||||
12632
|
||||
%%EOF
|
1152
Rplots.pdf
Executable file
1152
Rplots.pdf
Executable file
File diff suppressed because it is too large
Load diff
25
annexe.tex
Executable file
25
annexe.tex
Executable file
|
@ -0,0 +1,25 @@
|
|||
|
||||
\section{Annexes}
|
||||
|
||||
\subsection{Fichier source R pour courbes de Nelson Siegel}
|
||||
|
||||
\verbatiminput{nelsonsiegel.r}
|
||||
|
||||
\subsection{Fichier source R pour PCA}
|
||||
|
||||
\verbatiminput{pca.r}
|
||||
|
||||
\subsection{Fichiers source R pour MMG}
|
||||
|
||||
\subsubsection{Fonctions}
|
||||
|
||||
\verbatiminput{gmm.r}
|
||||
|
||||
\subsubsection{Fichier d'exécution}
|
||||
|
||||
\verbatiminput{gmmexec.r}
|
||||
|
||||
\subsection{Fichiers source R pour EMV}
|
||||
|
||||
\verbatiminput{mlevasicek.r}
|
||||
|
54
biblio.bib
Executable file
54
biblio.bib
Executable file
|
@ -0,0 +1,54 @@
|
|||
@Article{kladivko,
|
||||
author = {Kamil Kladivko},
|
||||
title = {Maximum Likelihood Estimation of the Cox-Ingersoll-Ross Process: The MATLAB Implementation},
|
||||
journal = {Technical Computing Prague},
|
||||
year = {2007},
|
||||
OPTkey = {},
|
||||
OPTvolume = {},
|
||||
OPTnumber = {},
|
||||
OPTpages = {},
|
||||
OPTmonth = {},
|
||||
OPTnote = {},
|
||||
OPTannote = {}
|
||||
}
|
||||
|
||||
@article{Newey_West_1987,
|
||||
title={A simple positive semi-definite heteroskedasticity and autocorrelation consistent covariance matrix},
|
||||
url={http://www.nber.org/papers/t0055.pdf},
|
||||
journal={Econometrica},
|
||||
publisher={National Bureau of Economic Research Cambridge, Mass., USA},
|
||||
author={Newey, W K and West, K D}, year={1987}
|
||||
}
|
||||
|
||||
|
||||
@book{james2000interest,
|
||||
title={Interest rate modelling},
|
||||
author={James, J. and Webber, N.},
|
||||
isbn={9780471975236},
|
||||
lccn={99087500},
|
||||
series={Wiley series in financial engineering},
|
||||
url={http://books.google.com.mx/books?id=\_KNzQgAACAAJ},
|
||||
year={2000},
|
||||
publisher={John Wiley \& Sons}
|
||||
}
|
||||
|
||||
@book{lai2008statistical,
|
||||
title={Statistical models and methods for financial markets},
|
||||
author={Lai, T.L. and Xing, H.},
|
||||
isbn={9780387778266},
|
||||
lccn={2008930111},
|
||||
series={Springer texts in statistics},
|
||||
url={http://books.google.ca/books?id=DP4MrNH0rJQC},
|
||||
year={2008},
|
||||
publisher={Springer}
|
||||
}
|
||||
|
||||
@article{chan1992empirical,
|
||||
title={An empirical comparison of alternative models of the short-term interest rate},
|
||||
author={Chan, K.C. and Karolyi, G.A. and Longstaff, F.A. and Sanders, A.B.},
|
||||
journal={Journal of Finance},
|
||||
pages={1209--1227},
|
||||
year={1992},
|
||||
publisher={JSTOR}
|
||||
}
|
||||
|
2
bibliographie.tex
Executable file
2
bibliographie.tex
Executable file
|
@ -0,0 +1,2 @@
|
|||
\bibliography{biblio}
|
||||
\bibliographystyle{plain}
|
BIN
by-sa.pdf
Normal file
BIN
by-sa.pdf
Normal file
Binary file not shown.
BIN
by.pdf
Normal file
BIN
by.pdf
Normal file
Binary file not shown.
37
cc.tex
Normal file
37
cc.tex
Normal file
|
@ -0,0 +1,37 @@
|
|||
\includegraphics[height=7mm,keepaspectratio=true]{by-sa}\\%
|
||||
Cette création est mise à disposition selon le contrat
|
||||
\href{http://creativecommons.org/licenses/by-sa/2.5/ca/deed.fr}{%
|
||||
Paternité-Partage à l'identique 2.5 Canada} de Creative Commons
|
||||
disponible à l'adresse \\
|
||||
http://creativecommons.org/licenses/by-sa/2.5/ca/deed.fr \\
|
||||
|
||||
En vertu de ce contrat, vous êtes libre de :
|
||||
|
||||
\begin{itemize}
|
||||
\item \textbf{partager} --- reproduire, distribuer et communiquer
|
||||
l'{\oe}uvre;
|
||||
\item \textbf{remixer} --- adapter l'{\oe}uvre;
|
||||
\item utiliser cette {\oe}uvre à des fins commerciales.
|
||||
\end{itemize}
|
||||
|
||||
Selon les conditions suivantes:\\
|
||||
|
||||
\begin{tabularx}{\linewidth}{@{}lX@{}}
|
||||
\raisebox{-9mm}[0mm][13mm]{%
|
||||
\includegraphics[height=11mm,keepaspectratio=true]{by}} &
|
||||
\textbf{Attribution} --- Vous devez attribuer l'{\oe}uvre de la
|
||||
manière indiquée par l'auteur de l'{\oe}uvre ou le titulaire des
|
||||
droits (mais pas d'une manière qui suggérerait qu'ils vous
|
||||
soutiennent ou
|
||||
approuvent votre utilisation de l'{\oe}uvre). \\
|
||||
\raisebox{-9mm}{\includegraphics[height=11mm,keepaspectratio=true]{sa}}
|
||||
& \textbf{Partage à l'identique} --- Si vous modifiez, transformez
|
||||
ou adaptez cette {\oe}uvre, vous n'avez le droit de distribuer
|
||||
votre création que sous une licence identique ou similaire à
|
||||
celle-ci.
|
||||
\end{tabularx}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: t
|
||||
%%% End:
|
306
ckls.csv
Executable file
306
ckls.csv
Executable file
|
@ -0,0 +1,306 @@
|
|||
3.411
|
||||
3.259
|
||||
3.264
|
||||
3.523
|
||||
3.427
|
||||
3.574
|
||||
3.427
|
||||
3.884
|
||||
3.849
|
||||
3.788
|
||||
3.859
|
||||
3.732
|
||||
3.783
|
||||
3.768
|
||||
3.783
|
||||
3.986
|
||||
3.849
|
||||
3.798
|
||||
4.266
|
||||
4.531
|
||||
4.459
|
||||
4.418
|
||||
4.602
|
||||
4.459
|
||||
4.520
|
||||
4.546
|
||||
4.724
|
||||
5.157
|
||||
4.775
|
||||
4.266
|
||||
4.470
|
||||
4.546
|
||||
4.485
|
||||
4.062
|
||||
3.453
|
||||
3.249
|
||||
3.707
|
||||
3.808
|
||||
3.859
|
||||
4.154
|
||||
4.149
|
||||
4.190
|
||||
4.343
|
||||
4.807
|
||||
4.673
|
||||
4.852
|
||||
5.488
|
||||
5.386
|
||||
5.285
|
||||
5.259
|
||||
4.938
|
||||
5.162
|
||||
5.411
|
||||
4.836
|
||||
6.099
|
||||
5.999
|
||||
5.641
|
||||
5.361
|
||||
6.125
|
||||
5.845
|
||||
6.481
|
||||
6.915
|
||||
6.660
|
||||
6.945
|
||||
6.685
|
||||
6.447
|
||||
6.787
|
||||
7.728
|
||||
6.303
|
||||
6.415
|
||||
6.512
|
||||
6.309
|
||||
5.930
|
||||
5.895
|
||||
6.109
|
||||
5.819
|
||||
5.274
|
||||
4.449
|
||||
4.439
|
||||
4.062
|
||||
3.229
|
||||
3.406
|
||||
3.676
|
||||
3.870
|
||||
5.019
|
||||
5.060
|
||||
4.408
|
||||
4.531
|
||||
3.992
|
||||
3.828
|
||||
3.351
|
||||
3.127
|
||||
3.147
|
||||
3.483
|
||||
3.249
|
||||
3.401
|
||||
3.625
|
||||
3.513
|
||||
4.307
|
||||
4.429
|
||||
4.541
|
||||
4.917
|
||||
4.867
|
||||
5.571
|
||||
5.579
|
||||
5.875
|
||||
5.987
|
||||
6.527
|
||||
7.436
|
||||
8.312
|
||||
8.581
|
||||
7.335
|
||||
6.928
|
||||
7.447
|
||||
7.364
|
||||
7.550
|
||||
7.377
|
||||
8.500
|
||||
8.771
|
||||
7.834
|
||||
7.681
|
||||
7.715
|
||||
9.215
|
||||
6.170
|
||||
6.672
|
||||
7.498
|
||||
6.537
|
||||
5.540
|
||||
4.756
|
||||
5.274
|
||||
5.214
|
||||
4.856
|
||||
5.651
|
||||
6.030
|
||||
5.968
|
||||
6.292
|
||||
5.316
|
||||
5.184
|
||||
5.172
|
||||
4.521
|
||||
4.654
|
||||
4.756
|
||||
4.694
|
||||
5.060
|
||||
5.296
|
||||
5.081
|
||||
4.764
|
||||
5.082
|
||||
4.756
|
||||
4.347
|
||||
4.257
|
||||
4.551
|
||||
4.429
|
||||
4.541
|
||||
4.388
|
||||
4.835
|
||||
4.949
|
||||
5.346
|
||||
5.378
|
||||
5.815
|
||||
5.824
|
||||
5.694
|
||||
5.754
|
||||
5.997
|
||||
6.088
|
||||
6.497
|
||||
6.049
|
||||
6.510
|
||||
6.560
|
||||
6.517
|
||||
7.601
|
||||
8.019
|
||||
8.536
|
||||
9.063
|
||||
8.428
|
||||
9.522
|
||||
9.542
|
||||
9.642
|
||||
9.569
|
||||
9.687
|
||||
8.990
|
||||
9.098
|
||||
10.054
|
||||
10.279
|
||||
11.717
|
||||
10.904
|
||||
9.344
|
||||
11.722
|
||||
13.616
|
||||
15.051
|
||||
9.238
|
||||
7.182
|
||||
6.201
|
||||
7.499
|
||||
9.297
|
||||
10.795
|
||||
11.367
|
||||
14.652
|
||||
12.528
|
||||
13.919
|
||||
14.032
|
||||
13.017
|
||||
13.819
|
||||
16.150
|
||||
14.411
|
||||
14.957
|
||||
14.968
|
||||
13.997
|
||||
12.718
|
||||
10.244
|
||||
9.636
|
||||
11.929
|
||||
11.826
|
||||
13.421
|
||||
12.236
|
||||
11.437
|
||||
11.779
|
||||
8.919
|
||||
6.211
|
||||
7.019
|
||||
7.703
|
||||
7.628
|
||||
8.060
|
||||
8.037
|
||||
7.425
|
||||
8.572
|
||||
8.111
|
||||
8.077
|
||||
8.695
|
||||
8.919
|
||||
9.146
|
||||
8.755
|
||||
8.446
|
||||
8.502
|
||||
8.643
|
||||
8.884
|
||||
8.890
|
||||
9.553
|
||||
9.263
|
||||
9.359
|
||||
9.358
|
||||
9.650
|
||||
10.719
|
||||
10.433
|
||||
8.604
|
||||
7.407
|
||||
7.598
|
||||
7.652
|
||||
7.714
|
||||
8.091
|
||||
7.353
|
||||
7.030
|
||||
6.631
|
||||
7.061
|
||||
7.070
|
||||
7.068
|
||||
7.173
|
||||
6.570
|
||||
5.905
|
||||
6.784
|
||||
6.947
|
||||
6.272
|
||||
5.898
|
||||
6.152
|
||||
5.885
|
||||
5.632
|
||||
5.122
|
||||
5.111
|
||||
5.122
|
||||
4.960
|
||||
5.113
|
||||
5.581
|
||||
5.367
|
||||
5.202
|
||||
4.858
|
||||
5.387
|
||||
4.927
|
||||
5.601
|
||||
5.661
|
||||
6.500
|
||||
4.023
|
||||
3.513
|
||||
3.687
|
||||
5.285
|
||||
5.172
|
||||
5.734
|
||||
5.754
|
||||
5.864
|
||||
6.540
|
||||
6.376
|
||||
7.204
|
||||
7.090
|
||||
6.741
|
||||
6.826
|
||||
6.611
|
||||
7.883
|
||||
7.536
|
||||
8.775
|
||||
8.561
|
||||
8.594
|
||||
8.254
|
||||
7.843
|
||||
7.785
|
||||
7.754
|
||||
7.689
|
||||
7.070
|
|
13
compilepdf.sh
Executable file
13
compilepdf.sh
Executable file
|
@ -0,0 +1,13 @@
|
|||
#! /bin/sh
|
||||
R CMD BATCH nelsonsiegel.r
|
||||
R CMD BATCH gmm.r
|
||||
R CMD BATCH gmmexec.r
|
||||
R CMD BATCH mlevasicek.r
|
||||
R CMD BATCH pca.r
|
||||
pdflatex "\input" rapport.tex
|
||||
bibtex rapport
|
||||
pdflatex "\input" rapport.tex
|
||||
pdflatex "\input" rapport.tex
|
||||
pdflatex "\input" presentation-beamer.tex
|
||||
pdflatex "\input" presentation-beamer.tex
|
||||
|
299
gmm.r
Executable file
299
gmm.r
Executable file
|
@ -0,0 +1,299 @@
|
|||
## general methods of moments (GMM)
|
||||
library(MASS)
|
||||
|
||||
MMGpoidsNW <- function(param,modele)
|
||||
{
|
||||
donnees <- modele$donnees
|
||||
q <- modele$q
|
||||
donneesF <- donnees[-1]
|
||||
donneesL <- donnees[-length(donnees)]
|
||||
deltaTemps <- modele$deltaTemps
|
||||
a <- param[1]
|
||||
b <- param[2]
|
||||
Gamma <- array(0,c(4,4,q+1))
|
||||
if(modele$nomModele=="CKLS")
|
||||
{
|
||||
sigma <- param[3]
|
||||
gamma <- param[4]
|
||||
g1t <- donneesF - a - b * donneesL
|
||||
g2t <- (donneesF - a - b * donneesL) ^ 2 - sigma^2 * donneesL ^ (2*gamma) *
|
||||
deltaTemps
|
||||
g3t <- (donneesF - a - b * donneesL) * donneesL
|
||||
g4t <- ((donneesF - a - b * donneesL) ^ 2 - sigma ^ 2 * donneesL ^ (2*gamma) *
|
||||
deltaTemps) * donneesL
|
||||
}
|
||||
|
||||
if(modele$nomModele=="CIR")
|
||||
{
|
||||
sigma <- param[3]
|
||||
g1t <- donneesF - a - b * donneesL
|
||||
g2t <- (donneesF - a - b * donneesL) ^ 2 - sigma ^ 2 * donneesL * deltaTemps
|
||||
g3t <- (donneesF - a - b * donneesL) * donneesL
|
||||
g4t <- ((donneesF - a - b * donneesL) ^ 2 - sigma ^ 2 * donneesL * deltaTemps) *
|
||||
donneesL
|
||||
}
|
||||
|
||||
if(modele$nomModele=="Vasicek")
|
||||
{
|
||||
sigma <- param[3]
|
||||
g1t <- donneesF - a - b * donneesL
|
||||
g2t <- (donneesF - a - b * donneesL) ^ 2 - sigma ^ 2 * deltaTemps
|
||||
g3t <- (donneesF - a - b * donneesL) * donneesL
|
||||
g4t <- ((donneesF - a - b * donneesL) ^ 2 - sigma ^ 2 * deltaTemps) * donneesL
|
||||
}
|
||||
gt <- cbind(g1t,g2t,g3t,g4t)
|
||||
n <- length(g1t)
|
||||
## en attendant
|
||||
#W <- solve(cov(gt))
|
||||
## Newey-West
|
||||
gtc <- apply(gt,2,function(x) x-mean(x))
|
||||
for(v in 0:q)
|
||||
{
|
||||
gtF <- gtc[(1+v):n,]
|
||||
gtL <- gtc[1:(n-v),]
|
||||
Gamma[,,(v+1)] <- t(gtF) %*% gtL / n
|
||||
}
|
||||
S <- Gamma[,,1]
|
||||
for(v in 1:q)
|
||||
{
|
||||
Snext <- (1-v/(q+1)) * (Gamma[,,v+1] + t(Gamma[,,v+1]))
|
||||
S <- S+Snext
|
||||
}
|
||||
W <- ginv(S)
|
||||
}
|
||||
|
||||
MomentsJacobien <- function(param, modele)
|
||||
{
|
||||
donnees <- modele$donnees
|
||||
donneesF <- donnees[-1]
|
||||
donneesL <- donnees[-length(donnees)]
|
||||
n <- length(donneesL)
|
||||
deltaTemps <- modele$deltaTemps
|
||||
if(modele$nomModele=="CKLS")
|
||||
{
|
||||
a <- param[1]
|
||||
b <- param[2]
|
||||
sigma <- param[3]
|
||||
gamma <- param[4]
|
||||
|
||||
g1a <- -n
|
||||
g2a <- -2*sum(donneesF - a - b*donneesL)
|
||||
g3a <- -sum(donneesL)
|
||||
g4a <- -2*sum((donneesF - a - b*donneesL)*donneesL)
|
||||
|
||||
g1b <- -sum(donneesL)
|
||||
g2b <- -2*sum((donneesF - a - b*donneesL)*donneesL)
|
||||
g3b <- -sum(donneesL^2)
|
||||
g4b <- -2*sum((donneesF - a - b*donneesL)*donneesL^2)
|
||||
|
||||
g1s <- 0
|
||||
g2s <- -deltaTemps*sum(donneesL^(2*gamma))
|
||||
g3s <- 0
|
||||
g4s <- -deltaTemps*sum(donneesL^(2*gamma+1))
|
||||
|
||||
g1g <- 0
|
||||
g2g <- -2*sigma^2*deltaTemps*sum(log(donneesL)*donneesL^(2*gamma))
|
||||
g3g <- 0
|
||||
g4g <- -2*sigma^2*deltaTemps*sum(log(donneesL)*donneesL^(2*gamma+1))
|
||||
|
||||
d <- cbind(c(g1a, g1b, g1s, g1g),
|
||||
c(g2a, g2b, g2s, g2g),
|
||||
c(g3a, g3b, g3s, g3g),
|
||||
c(g4a, g4b, g4s, g4g))/n
|
||||
}
|
||||
if(modele$nomModele=="CIR")
|
||||
{
|
||||
a <- param[1]
|
||||
b <- param[2]
|
||||
|
||||
g1a <- -n
|
||||
g2a <- -2*sum(donneesF - a - b*donneesL)
|
||||
g3a <- -sum(donneesL)
|
||||
g4a <- -2*sum((donneesF - a - b*donneesL)*donneesL)
|
||||
|
||||
g1b <- -sum(donneesL)
|
||||
g2b <- -2*sum((donneesF - a - b*donneesL)*donneesL)
|
||||
g3b <- -sum(donneesL^2)
|
||||
g4b <- -2*sum((donneesF - a - b*donneesL)*donneesL^2)
|
||||
|
||||
g1s <- 0
|
||||
g2s <- -sum(deltaTemps*donneesL)
|
||||
g3s <- 0
|
||||
g4s <- -sum(deltaTemps*donneesL*donneesL)
|
||||
|
||||
d <- cbind(c(g1a, g1b, g1s),
|
||||
c(g2a, g2b, g2s),
|
||||
c(g3a, g3b, g3s),
|
||||
c(g4a, g4b, g4s))/n
|
||||
}
|
||||
if(modele$nomModele=="Vasicek")
|
||||
{
|
||||
a <- param[1]
|
||||
b <- param[2]
|
||||
|
||||
g1a <- -n
|
||||
g2a <- -2*sum(donneesF - a - b*donneesL)
|
||||
g3a <- -sum(donneesL)
|
||||
g4a <- -2*sum((donneesF - a - b*donneesL)*donneesL)
|
||||
|
||||
g1b <- -sum(donneesL)
|
||||
g2b <- -2*sum((donneesF - a - b*donneesL)*donneesL)
|
||||
g3b <- -sum(donneesL^2)
|
||||
g4b <- -2*sum((donneesF - a - b*donneesL)*donneesL^2)
|
||||
|
||||
g1s <- 0
|
||||
g2s <- -deltaTemps*n
|
||||
g3s <- 0
|
||||
g4s <- -sum(deltaTemps*donneesL)
|
||||
|
||||
d <- cbind(c(g1a, g1b, g1s),
|
||||
c(g2a, g2b, g2s),
|
||||
c(g3a, g3b, g3s),
|
||||
c(g4a, g4b, g4s))/n
|
||||
}
|
||||
d
|
||||
}
|
||||
|
||||
MMGobjectif<- function(param, modele, W)
|
||||
{
|
||||
donnees <- modele$donnees
|
||||
donneesF <- donnees[-1]
|
||||
donneesL <- donnees[-length(donnees)]
|
||||
n <- length(donnees)-2
|
||||
deltaTemps <- modele$deltaTemps
|
||||
a <- param[1]
|
||||
b <- param[2]
|
||||
|
||||
if(modele$nomModele=="CKLS")
|
||||
{
|
||||
sigma <- param[3]
|
||||
gamma <- param[4]
|
||||
g1 <- sum(donneesF - a - b * donneesL)
|
||||
g2 <- sum((donneesF - a - b * donneesL) ^ 2 - sigma^2 * donneesL ^ (2*gamma) *
|
||||
deltaTemps)
|
||||
g3 <- sum((donneesF - a - b * donneesL) * donneesL)
|
||||
g4 <- sum(((donneesF - a - b * donneesL) ^ 2 - sigma ^ 2 * donneesL ^ (2*gamma) *
|
||||
deltaTemps) * donneesL )
|
||||
}
|
||||
|
||||
if(modele$nomModele=="CIR")
|
||||
{
|
||||
sigma <- param[3]
|
||||
g1 <- sum(donneesF - a - b * donneesL)
|
||||
g2 <- sum((donneesF - a - b * donneesL) ^ 2 - sigma ^ 2 * donneesL * deltaTemps)
|
||||
g3 <- sum((donneesF - a - b * donneesL) * donneesL)
|
||||
g4 <- sum(((donneesF - a - b * donneesL) ^ 2 - sigma ^ 2 * donneesL * deltaTemps)*
|
||||
donneesL)
|
||||
}
|
||||
|
||||
if(modele$nomModele=="Vasicek")
|
||||
{
|
||||
sigma <- param[3]
|
||||
g1 <- sum(donneesF - a - b * donneesL)
|
||||
g2 <- sum((donneesF - a - b * donneesL) ^ 2 - sigma ^ 2 * deltaTemps)
|
||||
g3 <- sum((donneesF - a - b * donneesL) * donneesL)
|
||||
g4 <- sum(((donneesF - a - b * donneesL) ^ 2 - sigma ^ 2 * deltaTemps) *
|
||||
donneesL)
|
||||
}
|
||||
g <- c(g1,g2,g3,g4)/n
|
||||
t(g) %*% W %*% g
|
||||
}
|
||||
|
||||
MMGestimation <- function(modele)
|
||||
{
|
||||
deltaTemps <- modele$deltaTemps
|
||||
## paramètres initiaux
|
||||
if(modele$nomModele=="CKLS")
|
||||
{
|
||||
alpha <- 0.5
|
||||
beta <- -0.5
|
||||
sigma <- 0.5
|
||||
gamma <- 0.5
|
||||
a <- alpha * deltaTemps
|
||||
b <- beta * deltaTemps + 1
|
||||
Initialparam <- c(a,b,sigma,gamma)
|
||||
}
|
||||
if(modele$nomModele=="CIR" || modele$nomModele=="Vasicek")
|
||||
{
|
||||
alpha <- 0.5
|
||||
beta <- -0.5
|
||||
sigma <- 0.5
|
||||
a <- alpha * deltaTemps
|
||||
b <- beta * deltaTemps + 1
|
||||
Initialparam <- c(a,b,sigma)
|
||||
}
|
||||
## Première étape avec matrice identité
|
||||
W <- diag(4)
|
||||
estim <- nlminb(Initialparam,MMGobjectif,gr=NULL,hessian=NULL,modele,W)
|
||||
param <- estim$par
|
||||
Fval <- estim$objective
|
||||
Exitflag <- estim$convergence
|
||||
if(modele$nomModele=="CKLS")
|
||||
{
|
||||
Ralpha <- estim$par[1] / deltaTemps
|
||||
Rbeta <- (estim$par[2] - 1) / deltaTemps
|
||||
Rsigma2 <- estim$par[3] ^ 2
|
||||
Rgamma <- estim$par[4]
|
||||
}
|
||||
if(modele$nomModele=="CIR")
|
||||
{
|
||||
Ralpha <- estim$par[1] / deltaTemps
|
||||
Rbeta <- (estim$par[2] - 1) / deltaTemps
|
||||
Rsigma2 <- estim$par[3] ^ 2
|
||||
Rgamma <- 0.5
|
||||
}
|
||||
|
||||
if(modele$nomModele=="Vasicek")
|
||||
{
|
||||
Ralpha <- estim$par[1] / deltaTemps
|
||||
Rbeta <- (estim$par[2] - 1) / deltaTemps
|
||||
Rsigma2 <- estim$par[3] ^ 2
|
||||
Rgamma <- 0
|
||||
}
|
||||
## Seconde étape avec matrice W
|
||||
if(modele$Iterations>0)
|
||||
{
|
||||
for (i in 1:modele$Iterations)
|
||||
{
|
||||
Initialparam <- param
|
||||
W <- MMGpoidsNW(param, modele)
|
||||
estim <- nlminb(Initialparam,MMGobjectif,gr=NULL,hessian=NULL,modele,W)
|
||||
param <- estim$par
|
||||
Fval <- estim$objective
|
||||
Exitflag <- estim$convergence
|
||||
if(modele$nomModele=="CKLS")
|
||||
{
|
||||
Ralpha <- estim$par[1] / deltaTemps
|
||||
Rbeta <- (estim$par[2] - 1) / deltaTemps
|
||||
Rsigma2 <- estim$par[3] ^ 2
|
||||
Rgamma <- estim$par[4]
|
||||
}
|
||||
if(modele$nomModele=="CIR")
|
||||
{
|
||||
Ralpha <- estim$par[1] / deltaTemps
|
||||
Rbeta <- (estim$par[2] - 1) / deltaTemps
|
||||
Rsigma2 <- estim$par[3] ^ 2
|
||||
Rgamma <- 0.5
|
||||
}
|
||||
|
||||
if(modele$nomModele=="Vasicek")
|
||||
{
|
||||
Ralpha <- estim$par[1] / deltaTemps
|
||||
Rbeta <- (estim$par[2] - 1) / deltaTemps
|
||||
Rsigma2 <- estim$par[3] ^ 2
|
||||
Rgamma <- 0
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
## Statistique T
|
||||
n <- length(modele$donnees)-1
|
||||
d <- MomentsJacobien(param,modele)
|
||||
Varparam <- ginv(d %*% W %*% t(d))
|
||||
Tstat <- solve(chol(Varparam),param)/sqrt(n)
|
||||
Tpvalue <- 1-pt(Tstat,n-length(param))
|
||||
list(Tstat=Tstat,Tpvalue=Tpvalue,
|
||||
Varparam=Varparam,param = c(Ralpha,Rbeta,Rsigma2,Rgamma), Fval=Fval,
|
||||
Exitflag=Exitflag)
|
||||
|
||||
}
|
323
gmm.r.Rout
Normal file
323
gmm.r.Rout
Normal file
|
@ -0,0 +1,323 @@
|
|||
|
||||
R version 2.15.2 (2012-10-26) -- "Trick or Treat"
|
||||
Copyright (C) 2012 The R Foundation for Statistical Computing
|
||||
ISBN 3-900051-07-0
|
||||
Platform: x86_64-pc-linux-gnu (64-bit)
|
||||
|
||||
R est un logiciel libre livré sans AUCUNE GARANTIE.
|
||||
Vous pouvez le redistribuer sous certaines conditions.
|
||||
Tapez 'license()' ou 'licence()' pour plus de détails.
|
||||
|
||||
R est un projet collaboratif avec de nombreux contributeurs.
|
||||
Tapez 'contributors()' pour plus d'information et
|
||||
'citation()' pour la façon de le citer dans les publications.
|
||||
|
||||
Tapez 'demo()' pour des démonstrations, 'help()' pour l'aide
|
||||
en ligne ou 'help.start()' pour obtenir l'aide au format HTML.
|
||||
Tapez 'q()' pour quitter R.
|
||||
|
||||
[Sauvegarde de la session précédente restaurée]
|
||||
|
||||
> ## general methods of moments (GMM)
|
||||
> library(MASS)
|
||||
>
|
||||
> MMGpoidsNW <- function(param,modele)
|
||||
+ {
|
||||
+ donnees <- modele$donnees
|
||||
+ q <- modele$q
|
||||
+ donneesF <- donnees[-1]
|
||||
+ donneesL <- donnees[-length(donnees)]
|
||||
+ deltaTemps <- modele$deltaTemps
|
||||
+ a <- param[1]
|
||||
+ b <- param[2]
|
||||
+ Gamma <- array(0,c(4,4,q+1))
|
||||
+ if(modele$nomModele=="CKLS")
|
||||
+ {
|
||||
+ sigma <- param[3]
|
||||
+ gamma <- param[4]
|
||||
+ g1t <- donneesF - a - b * donneesL
|
||||
+ g2t <- (donneesF - a - b * donneesL) ^ 2 - sigma^2 * donneesL ^ (2*gamma) *
|
||||
+ deltaTemps
|
||||
+ g3t <- (donneesF - a - b * donneesL) * donneesL
|
||||
+ g4t <- ((donneesF - a - b * donneesL) ^ 2 - sigma ^ 2 * donneesL ^ (2*gamma) *
|
||||
+ deltaTemps) * donneesL
|
||||
+ }
|
||||
+
|
||||
+ if(modele$nomModele=="CIR")
|
||||
+ {
|
||||
+ sigma <- param[3]
|
||||
+ g1t <- donneesF - a - b * donneesL
|
||||
+ g2t <- (donneesF - a - b * donneesL) ^ 2 - sigma ^ 2 * donneesL * deltaTemps
|
||||
+ g3t <- (donneesF - a - b * donneesL) * donneesL
|
||||
+ g4t <- ((donneesF - a - b * donneesL) ^ 2 - sigma ^ 2 * donneesL * deltaTemps) *
|
||||
+ donneesL
|
||||
+ }
|
||||
+
|
||||
+ if(modele$nomModele=="Vasicek")
|
||||
+ {
|
||||
+ sigma <- param[3]
|
||||
+ g1t <- donneesF - a - b * donneesL
|
||||
+ g2t <- (donneesF - a - b * donneesL) ^ 2 - sigma ^ 2 * deltaTemps
|
||||
+ g3t <- (donneesF - a - b * donneesL) * donneesL
|
||||
+ g4t <- ((donneesF - a - b * donneesL) ^ 2 - sigma ^ 2 * deltaTemps) * donneesL
|
||||
+ }
|
||||
+ gt <- cbind(g1t,g2t,g3t,g4t)
|
||||
+ n <- length(g1t)
|
||||
+ ## en attendant
|
||||
+ #W <- solve(cov(gt))
|
||||
+ ## Newey-West
|
||||
+ gtc <- apply(gt,2,function(x) x-mean(x))
|
||||
+ for(v in 0:q)
|
||||
+ {
|
||||
+ gtF <- gtc[(1+v):n,]
|
||||
+ gtL <- gtc[1:(n-v),]
|
||||
+ Gamma[,,(v+1)] <- t(gtF) %*% gtL / n
|
||||
+ }
|
||||
+ S <- Gamma[,,1]
|
||||
+ for(v in 1:q)
|
||||
+ {
|
||||
+ Snext <- (1-v/(q+1)) * (Gamma[,,v+1] + t(Gamma[,,v+1]))
|
||||
+ S <- S+Snext
|
||||
+ }
|
||||
+ W <- ginv(S)
|
||||
+ }
|
||||
>
|
||||
> MomentsJacobien <- function(param, modele)
|
||||
+ {
|
||||
+ donnees <- modele$donnees
|
||||
+ donneesF <- donnees[-1]
|
||||
+ donneesL <- donnees[-length(donnees)]
|
||||
+ n <- length(donneesL)
|
||||
+ deltaTemps <- modele$deltaTemps
|
||||
+ if(modele$nomModele=="CKLS")
|
||||
+ {
|
||||
+ a <- param[1]
|
||||
+ b <- param[2]
|
||||
+ sigma <- param[3]
|
||||
+ gamma <- param[4]
|
||||
+
|
||||
+ g1a <- -n
|
||||
+ g2a <- -2*sum(donneesF - a - b*donneesL)
|
||||
+ g3a <- -sum(donneesL)
|
||||
+ g4a <- -2*sum((donneesF - a - b*donneesL)*donneesL)
|
||||
+
|
||||
+ g1b <- -sum(donneesL)
|
||||
+ g2b <- -2*sum((donneesF - a - b*donneesL)*donneesL)
|
||||
+ g3b <- -sum(donneesL^2)
|
||||
+ g4b <- -2*sum((donneesF - a - b*donneesL)*donneesL^2)
|
||||
+
|
||||
+ g1s <- 0
|
||||
+ g2s <- -deltaTemps*sum(donneesL^(2*gamma))
|
||||
+ g3s <- 0
|
||||
+ g4s <- -deltaTemps*sum(donneesL^(2*gamma+1))
|
||||
+
|
||||
+ g1g <- 0
|
||||
+ g2g <- -2*sigma^2*deltaTemps*sum(log(donneesL)*donneesL^(2*gamma))
|
||||
+ g3g <- 0
|
||||
+ g4g <- -2*sigma^2*deltaTemps*sum(log(donneesL)*donneesL^(2*gamma+1))
|
||||
+
|
||||
+ d <- cbind(c(g1a, g1b, g1s, g1g),
|
||||
+ c(g2a, g2b, g2s, g2g),
|
||||
+ c(g3a, g3b, g3s, g3g),
|
||||
+ c(g4a, g4b, g4s, g4g))/n
|
||||
+ }
|
||||
+ if(modele$nomModele=="CIR")
|
||||
+ {
|
||||
+ a <- param[1]
|
||||
+ b <- param[2]
|
||||
+
|
||||
+ g1a <- -n
|
||||
+ g2a <- -2*sum(donneesF - a - b*donneesL)
|
||||
+ g3a <- -sum(donneesL)
|
||||
+ g4a <- -2*sum((donneesF - a - b*donneesL)*donneesL)
|
||||
+
|
||||
+ g1b <- -sum(donneesL)
|
||||
+ g2b <- -2*sum((donneesF - a - b*donneesL)*donneesL)
|
||||
+ g3b <- -sum(donneesL^2)
|
||||
+ g4b <- -2*sum((donneesF - a - b*donneesL)*donneesL^2)
|
||||
+
|
||||
+ g1s <- 0
|
||||
+ g2s <- -sum(deltaTemps*donneesL)
|
||||
+ g3s <- 0
|
||||
+ g4s <- -sum(deltaTemps*donneesL*donneesL)
|
||||
+
|
||||
+ d <- cbind(c(g1a, g1b, g1s),
|
||||
+ c(g2a, g2b, g2s),
|
||||
+ c(g3a, g3b, g3s),
|
||||
+ c(g4a, g4b, g4s))/n
|
||||
+ }
|
||||
+ if(modele$nomModele=="Vasicek")
|
||||
+ {
|
||||
+ a <- param[1]
|
||||
+ b <- param[2]
|
||||
+
|
||||
+ g1a <- -n
|
||||
+ g2a <- -2*sum(donneesF - a - b*donneesL)
|
||||
+ g3a <- -sum(donneesL)
|
||||
+ g4a <- -2*sum((donneesF - a - b*donneesL)*donneesL)
|
||||
+
|
||||
+ g1b <- -sum(donneesL)
|
||||
+ g2b <- -2*sum((donneesF - a - b*donneesL)*donneesL)
|
||||
+ g3b <- -sum(donneesL^2)
|
||||
+ g4b <- -2*sum((donneesF - a - b*donneesL)*donneesL^2)
|
||||
+
|
||||
+ g1s <- 0
|
||||
+ g2s <- -deltaTemps*n
|
||||
+ g3s <- 0
|
||||
+ g4s <- -sum(deltaTemps*donneesL)
|
||||
+
|
||||
+ d <- cbind(c(g1a, g1b, g1s),
|
||||
+ c(g2a, g2b, g2s),
|
||||
+ c(g3a, g3b, g3s),
|
||||
+ c(g4a, g4b, g4s))/n
|
||||
+ }
|
||||
+ d
|
||||
+ }
|
||||
>
|
||||
> MMGobjectif<- function(param, modele, W)
|
||||
+ {
|
||||
+ donnees <- modele$donnees
|
||||
+ donneesF <- donnees[-1]
|
||||
+ donneesL <- donnees[-length(donnees)]
|
||||
+ n <- length(donnees)-2
|
||||
+ deltaTemps <- modele$deltaTemps
|
||||
+ a <- param[1]
|
||||
+ b <- param[2]
|
||||
+
|
||||
+ if(modele$nomModele=="CKLS")
|
||||
+ {
|
||||
+ sigma <- param[3]
|
||||
+ gamma <- param[4]
|
||||
+ g1 <- sum(donneesF - a - b * donneesL)
|
||||
+ g2 <- sum((donneesF - a - b * donneesL) ^ 2 - sigma^2 * donneesL ^ (2*gamma) *
|
||||
+ deltaTemps)
|
||||
+ g3 <- sum((donneesF - a - b * donneesL) * donneesL)
|
||||
+ g4 <- sum(((donneesF - a - b * donneesL) ^ 2 - sigma ^ 2 * donneesL ^ (2*gamma) *
|
||||
+ deltaTemps) * donneesL )
|
||||
+ }
|
||||
+
|
||||
+ if(modele$nomModele=="CIR")
|
||||
+ {
|
||||
+ sigma <- param[3]
|
||||
+ g1 <- sum(donneesF - a - b * donneesL)
|
||||
+ g2 <- sum((donneesF - a - b * donneesL) ^ 2 - sigma ^ 2 * donneesL * deltaTemps)
|
||||
+ g3 <- sum((donneesF - a - b * donneesL) * donneesL)
|
||||
+ g4 <- sum(((donneesF - a - b * donneesL) ^ 2 - sigma ^ 2 * donneesL * deltaTemps)*
|
||||
+ donneesL)
|
||||
+ }
|
||||
+
|
||||
+ if(modele$nomModele=="Vasicek")
|
||||
+ {
|
||||
+ sigma <- param[3]
|
||||
+ g1 <- sum(donneesF - a - b * donneesL)
|
||||
+ g2 <- sum((donneesF - a - b * donneesL) ^ 2 - sigma ^ 2 * deltaTemps)
|
||||
+ g3 <- sum((donneesF - a - b * donneesL) * donneesL)
|
||||
+ g4 <- sum(((donneesF - a - b * donneesL) ^ 2 - sigma ^ 2 * deltaTemps) *
|
||||
+ donneesL)
|
||||
+ }
|
||||
+ g <- c(g1,g2,g3,g4)/n
|
||||
+ t(g) %*% W %*% g
|
||||
+ }
|
||||
>
|
||||
> MMGestimation <- function(modele)
|
||||
+ {
|
||||
+ deltaTemps <- modele$deltaTemps
|
||||
+ ## paramètres initiaux
|
||||
+ if(modele$nomModele=="CKLS")
|
||||
+ {
|
||||
+ alpha <- 0.5
|
||||
+ beta <- -0.5
|
||||
+ sigma <- 0.5
|
||||
+ gamma <- 0.5
|
||||
+ a <- alpha * deltaTemps
|
||||
+ b <- beta * deltaTemps + 1
|
||||
+ Initialparam <- c(a,b,sigma,gamma)
|
||||
+ }
|
||||
+ if(modele$nomModele=="CIR" || modele$nomModele=="Vasicek")
|
||||
+ {
|
||||
+ alpha <- 0.5
|
||||
+ beta <- -0.5
|
||||
+ sigma <- 0.5
|
||||
+ a <- alpha * deltaTemps
|
||||
+ b <- beta * deltaTemps + 1
|
||||
+ Initialparam <- c(a,b,sigma)
|
||||
+ }
|
||||
+ ## Première étape avec matrice identité
|
||||
+ W <- diag(4)
|
||||
+ estim <- nlminb(Initialparam,MMGobjectif,gr=NULL,hessian=NULL,modele,W)
|
||||
+ param <- estim$par
|
||||
+ Fval <- estim$objective
|
||||
+ Exitflag <- estim$convergence
|
||||
+ if(modele$nomModele=="CKLS")
|
||||
+ {
|
||||
+ Ralpha <- estim$par[1] / deltaTemps
|
||||
+ Rbeta <- (estim$par[2] - 1) / deltaTemps
|
||||
+ Rsigma2 <- estim$par[3] ^ 2
|
||||
+ Rgamma <- estim$par[4]
|
||||
+ }
|
||||
+ if(modele$nomModele=="CIR")
|
||||
+ {
|
||||
+ Ralpha <- estim$par[1] / deltaTemps
|
||||
+ Rbeta <- (estim$par[2] - 1) / deltaTemps
|
||||
+ Rsigma2 <- estim$par[3] ^ 2
|
||||
+ Rgamma <- 0.5
|
||||
+ }
|
||||
+
|
||||
+ if(modele$nomModele=="Vasicek")
|
||||
+ {
|
||||
+ Ralpha <- estim$par[1] / deltaTemps
|
||||
+ Rbeta <- (estim$par[2] - 1) / deltaTemps
|
||||
+ Rsigma2 <- estim$par[3] ^ 2
|
||||
+ Rgamma <- 0
|
||||
+ }
|
||||
+ ## Seconde étape avec matrice W
|
||||
+ if(modele$Iterations>0)
|
||||
+ {
|
||||
+ for (i in 1:modele$Iterations)
|
||||
+ {
|
||||
+ Initialparam <- param
|
||||
+ W <- MMGpoidsNW(param, modele)
|
||||
+ estim <- nlminb(Initialparam,MMGobjectif,gr=NULL,hessian=NULL,modele,W)
|
||||
+ param <- estim$par
|
||||
+ Fval <- estim$objective
|
||||
+ Exitflag <- estim$convergence
|
||||
+ if(modele$nomModele=="CKLS")
|
||||
+ {
|
||||
+ Ralpha <- estim$par[1] / deltaTemps
|
||||
+ Rbeta <- (estim$par[2] - 1) / deltaTemps
|
||||
+ Rsigma2 <- estim$par[3] ^ 2
|
||||
+ Rgamma <- estim$par[4]
|
||||
+ }
|
||||
+ if(modele$nomModele=="CIR")
|
||||
+ {
|
||||
+ Ralpha <- estim$par[1] / deltaTemps
|
||||
+ Rbeta <- (estim$par[2] - 1) / deltaTemps
|
||||
+ Rsigma2 <- estim$par[3] ^ 2
|
||||
+ Rgamma <- 0.5
|
||||
+ }
|
||||
+
|
||||
+ if(modele$nomModele=="Vasicek")
|
||||
+ {
|
||||
+ Ralpha <- estim$par[1] / deltaTemps
|
||||
+ Rbeta <- (estim$par[2] - 1) / deltaTemps
|
||||
+ Rsigma2 <- estim$par[3] ^ 2
|
||||
+ Rgamma <- 0
|
||||
+ }
|
||||
+ }
|
||||
+ }
|
||||
+
|
||||
+ ## Statistique T
|
||||
+ n <- length(modele$donnees)-1
|
||||
+ d <- MomentsJacobien(param,modele)
|
||||
+ Varparam <- ginv(d %*% W %*% t(d))
|
||||
+ Tstat <- solve(chol(Varparam),param)/sqrt(n)
|
||||
+ Tpvalue <- 1-pt(Tstat,n-length(param))
|
||||
+ list(Tstat=Tstat,Tpvalue=Tpvalue,
|
||||
+ Varparam=Varparam,param = c(Ralpha,Rbeta,Rsigma2,Rgamma), Fval=Fval,
|
||||
+ Exitflag=Exitflag)
|
||||
+
|
||||
+ }
|
||||
>
|
||||
> proc.time()
|
||||
utilisateur système écoulé
|
||||
0.272 0.020 0.286
|
73
gmmexec.r
Executable file
73
gmmexec.r
Executable file
|
@ -0,0 +1,73 @@
|
|||
source("gmm.r")
|
||||
library(r2lh)
|
||||
library(xtable)
|
||||
## Execution
|
||||
|
||||
## mes données
|
||||
rf <- data.matrix(read.table("usgg.csv",
|
||||
header=T, sep=";",na.strings = "#NA"))[(1:50)*30,2]/100
|
||||
sink("GMM-dates.txt")
|
||||
as.vector(read.table("usgg.csv",
|
||||
header=T, sep=";",na.strings = "#NA")[c(1,1500),1])
|
||||
sink()
|
||||
|
||||
pdf("serieGMM.pdf")
|
||||
ts.plot(rf)
|
||||
dev.off()
|
||||
|
||||
sink("summaryDonneesGMM.txt",append=FALSE,split=FALSE)
|
||||
summary(rf)
|
||||
sink()
|
||||
|
||||
## donnees ckls
|
||||
rf2 <- scan("ckls.csv")/100
|
||||
|
||||
ModeleCKLS <- list(donnees=rf,nomModele="CKLS",
|
||||
deltaTemps=1/12, Iterations=2, q=12)
|
||||
ModeleVASICEK <- list(donnees=rf,nomModele="Vasicek",
|
||||
deltaTemps=1/12, Iterations=2, q=12)
|
||||
ModeleCIR <- list(donnees=rf,nomModele="CIR",
|
||||
deltaTemps=1/12, Iterations=2, q=12)
|
||||
nomsParam <- c("a","b","sigma","gamma")
|
||||
nomsParam2 <- c("a","b","sigma")
|
||||
m1 <- MMGestimation(ModeleCKLS)
|
||||
m2 <- MMGestimation(ModeleVASICEK)
|
||||
m3 <- MMGestimation(ModeleCIR)
|
||||
|
||||
par1 <- cbind(m1$param,m1$Tstat,m1$Tpvalue)
|
||||
par2 <- cbind(m2$param,m2$Tstat,m2$Tpvalue)[-4,]
|
||||
par3 <- cbind(m3$param,m3$Tstat,m3$Tpvalue)[-4,]
|
||||
|
||||
cov1 <- m1$Varparam
|
||||
cov2 <- m2$Varparam
|
||||
cov3 <- m3$Varparam
|
||||
|
||||
|
||||
sink("MMGestimation.tex")
|
||||
|
||||
xtable(matrix(par1,nrow=4,ncol=3,
|
||||
dimnames=list(nomsParam,c("Est. param.","T-Stat","p-value"))),
|
||||
caption="Modèle CKLS estimé avec GMM",digits=5)
|
||||
|
||||
xtable(matrix(par2,nrow=3,ncol=3,
|
||||
dimnames=list(nomsParam2,c("Est. param.","T-Stat","p-value"))),
|
||||
caption="Modèle Vasicek estimé avec GMM",digits=5)
|
||||
|
||||
xtable(matrix(par3,nrow=3,ncol=3,
|
||||
dimnames=list(nomsParam2,c("Est. param.","T-Stat","p-value"))),
|
||||
caption="Modèle CIR estimé avec GMM",digits=5)
|
||||
|
||||
xtable(matrix(cov1,nrow=4,ncol=4,
|
||||
dimnames=list(nomsParam,nomsParam)),
|
||||
caption="Matrice de Var-Cov des par. pour modèle CKLS avec GMM",digits=5)
|
||||
xtable(matrix(cov2,nrow=3,ncol=3,
|
||||
dimnames=list(nomsParam2,nomsParam2)),
|
||||
caption="Matrice de Var-Cov des par. pour modèle Vasicek avec GMM",digits=5)
|
||||
xtable(matrix(cov3,nrow=3,ncol=3,
|
||||
dimnames=list(nomsParam2,nomsParam2)),
|
||||
caption="Matrice de Var-Cov des par. pour modèle CIR avec GMM",digits=5)
|
||||
|
||||
sink()
|
||||
|
||||
|
||||
|
24
gmmexec.r.Rout
Normal file
24
gmmexec.r.Rout
Normal file
|
@ -0,0 +1,24 @@
|
|||
|
||||
R version 2.15.2 (2012-10-26) -- "Trick or Treat"
|
||||
Copyright (C) 2012 The R Foundation for Statistical Computing
|
||||
ISBN 3-900051-07-0
|
||||
Platform: x86_64-pc-linux-gnu (64-bit)
|
||||
|
||||
R est un logiciel libre livré sans AUCUNE GARANTIE.
|
||||
Vous pouvez le redistribuer sous certaines conditions.
|
||||
Tapez 'license()' ou 'licence()' pour plus de détails.
|
||||
|
||||
R est un projet collaboratif avec de nombreux contributeurs.
|
||||
Tapez 'contributors()' pour plus d'information et
|
||||
'citation()' pour la façon de le citer dans les publications.
|
||||
|
||||
Tapez 'demo()' pour des démonstrations, 'help()' pour l'aide
|
||||
en ligne ou 'help.start()' pour obtenir l'aide au format HTML.
|
||||
Tapez 'q()' pour quitter R.
|
||||
|
||||
[Sauvegarde de la session précédente restaurée]
|
||||
|
||||
> source("gmm.r")
|
||||
> library(r2lh)
|
||||
Erreur dans library(r2lh) : aucun package nommé ‘r2lh’ n'est trouvé
|
||||
Exécution arrêtée
|
1
introduction.tex
Executable file
1
introduction.tex
Executable file
|
@ -0,0 +1 @@
|
|||
Ce travail porte sur différents types d'analyses empiriques pouvant être faites sur des séries de taux d'intérêt. Il vise surtout un survol de certaines des méthodes décrites dans \cite{james2000interest} et \cite{lai2008statistical}. Pour le chapitre 15, je traiterai des courbes de Nelson-Siegel pour modéliser les structures à terme. Pour le chapitre 16, je m'en tiendrai aux rudiments de l'analyse par composantes principales. Pour le chapitre 17, j'aborderai plus en détail les méthodes des moments généralisées et je terminerai par des estimations par maximum de vraisemblance.
|
1
mle-tests.r
Executable file
1
mle-tests.r
Executable file
|
@ -0,0 +1 @@
|
|||
|
81
mlevasicek.r
Executable file
81
mlevasicek.r
Executable file
|
@ -0,0 +1,81 @@
|
|||
##
|
||||
## maximum de vraisemblance avec Vasicek
|
||||
##
|
||||
library("xtable")
|
||||
|
||||
## importation des données
|
||||
data <- read.csv("usgg.csv",header=TRUE, sep=";")[(1:50)*30,]
|
||||
delta <- 1/12
|
||||
rf <- data$usgg3m/100
|
||||
rf[which(rf<=0)] <- 0.001
|
||||
|
||||
##
|
||||
## graphique quantile quantile
|
||||
##
|
||||
pdf("MLE-qqplot-norm.pdf")
|
||||
qqnorm(diff(rf))
|
||||
qqline
|
||||
dev.off()
|
||||
|
||||
## fonction objectif de log-vraisemblance négatif
|
||||
|
||||
VASICEK.FUNOBJ <- function(PAR,RF,DELTA)
|
||||
{
|
||||
mu <- PAR[2]
|
||||
alpha <- PAR[1]
|
||||
sigma <- PAR[3]
|
||||
n <- length(RF)
|
||||
moyenne <- RF[-n] * exp(-alpha*delta)+mu*(1-exp(-alpha*delta))
|
||||
variance <- sigma^2 * (1-exp(-2*alpha*delta)) / (2*alpha)
|
||||
-sum(dnorm(RF[-1],moyenne,sqrt(variance),log=TRUE))
|
||||
}
|
||||
|
||||
ES1 <- optim(c(.5,-.5,.5),fn=VASICEK.FUNOBJ,RF=rf,DELTA=delta)
|
||||
|
||||
##
|
||||
## maximum de vraisemblance avec CIR (quasi-vraisemblance normale)
|
||||
##
|
||||
|
||||
CIR.QV.FUNOBJ <- function(PAR,RF,DELTA)
|
||||
{
|
||||
mu <- PAR[2]
|
||||
alpha <- PAR[1]
|
||||
sigma <- PAR[3]
|
||||
n <- length(RF)
|
||||
moyenne <- RF[-n] * exp(-alpha * DELTA) +
|
||||
mu * (1-exp(-alpha * DELTA))
|
||||
variance <- RF[-n] * sigma^2/alpha * (exp(-alpha * DELTA) - exp(-2*alpha * DELTA)) +
|
||||
mu * sigma^2/2/alpha*(1-exp(-alpha * DELTA))^2
|
||||
-sum(dnorm(RF[-1],moyenne,sqrt(variance),log=TRUE))
|
||||
}
|
||||
|
||||
ES3 <- optim(c(alpha.st,mu.st,sigma.st),fn=CIR.QV.FUNOBJ,RF=rf,DELTA=delta)
|
||||
|
||||
##
|
||||
## sorties
|
||||
##
|
||||
ES1$par[3] <- ES1$par[3]^2
|
||||
ES3$par[3] <- ES3$par[3]^2
|
||||
|
||||
sink("MLE-dates.tex",append=FALSE,split=FALSE)
|
||||
as.vector(data$date[c(1,length(data$date))])
|
||||
sink()
|
||||
|
||||
sink("MLE-param.tex",append=FALSE,split=FALSE)
|
||||
xtable(cbind(Param=c("alpha","mu","sigma"),
|
||||
Vasicek=ES1$par,CIR.QL=ES3$par),
|
||||
caption="Paramètres estimés par maximum de vraisemblance pour 2 modèles",
|
||||
label="tab:estimParam")
|
||||
sink()
|
||||
|
||||
ES1$par
|
||||
ES3$par
|
||||
|
||||
##
|
||||
## test de ratio de vraisemblance
|
||||
##
|
||||
|
||||
loglik <- c(ES1$value,ES3$value)
|
||||
n <- length(rf)-1
|
||||
|
||||
1-pchisq(-2*n*(loglik[2]-loglik[1]),4)
|
26
mlevasicek.r.Rout
Normal file
26
mlevasicek.r.Rout
Normal file
|
@ -0,0 +1,26 @@
|
|||
|
||||
R version 2.15.2 (2012-10-26) -- "Trick or Treat"
|
||||
Copyright (C) 2012 The R Foundation for Statistical Computing
|
||||
ISBN 3-900051-07-0
|
||||
Platform: x86_64-pc-linux-gnu (64-bit)
|
||||
|
||||
R est un logiciel libre livré sans AUCUNE GARANTIE.
|
||||
Vous pouvez le redistribuer sous certaines conditions.
|
||||
Tapez 'license()' ou 'licence()' pour plus de détails.
|
||||
|
||||
R est un projet collaboratif avec de nombreux contributeurs.
|
||||
Tapez 'contributors()' pour plus d'information et
|
||||
'citation()' pour la façon de le citer dans les publications.
|
||||
|
||||
Tapez 'demo()' pour des démonstrations, 'help()' pour l'aide
|
||||
en ligne ou 'help.start()' pour obtenir l'aide au format HTML.
|
||||
Tapez 'q()' pour quitter R.
|
||||
|
||||
[Sauvegarde de la session précédente restaurée]
|
||||
|
||||
> ##
|
||||
> ## maximum de vraisemblance avec Vasicek
|
||||
> ##
|
||||
> library("xtable")
|
||||
Erreur dans library("xtable") : aucun package nommé ‘xtable’ n'est trouvé
|
||||
Exécution arrêtée
|
24739
nelsonsiegel-plots.pdf
Executable file
24739
nelsonsiegel-plots.pdf
Executable file
File diff suppressed because it is too large
Load diff
64
nelsonsiegel.r
Executable file
64
nelsonsiegel.r
Executable file
|
@ -0,0 +1,64 @@
|
|||
library("scatterplot3d")
|
||||
|
||||
##
|
||||
## implémentation de la courbe de Nelson-Siegel
|
||||
##
|
||||
|
||||
## Lecture des taux spot
|
||||
taux <- t(read.table("usgg.csv",header=T, sep=";",na.strings = "#NA")
|
||||
[seq(from=1,to=5758,by=30),2:6])
|
||||
length(taux)
|
||||
temps <- c(.25,2,3,5,10)
|
||||
|
||||
## fonction Nelson-Siegel originale
|
||||
f0t <- function(PAR,t)
|
||||
{
|
||||
PAR[1] + (PAR[2]+PAR[3]*t)*exp(-PAR[4]*t)
|
||||
}
|
||||
|
||||
## fonction objectif
|
||||
f0obj <- function(PAR,temps,taux)
|
||||
{
|
||||
sum((taux-f0t(PAR,temps))^2)
|
||||
}
|
||||
|
||||
## fonction qui retourne les paramètres
|
||||
NelsonSiegel <- function(taux,temps)
|
||||
{
|
||||
m1 <- optim(c(1,1,1,1),f0obj,gr=NULL,temps,taux)
|
||||
m1$par
|
||||
}
|
||||
|
||||
## dimensions pour le graphique
|
||||
duration <- seq(from=0,to=12,by=0.1)
|
||||
timeline <- 1:dim(taux)[2]
|
||||
|
||||
## calcul des paramètres pour chaque courbe
|
||||
parametres <- apply(taux,2,NelsonSiegel,temps)
|
||||
|
||||
## calcul des points du graphique
|
||||
pointsgraph <- cbind(rep(timeline,each=length(duration)),duration,
|
||||
as.vector(apply(parametres,2,f0t,duration)))
|
||||
|
||||
## tracer le graphique
|
||||
pdf("nelsonsiegel-plots.pdf")
|
||||
scatterplot3d(pointsgraph,type="l", pch=20,
|
||||
xlab="Observations",
|
||||
ylab="Duration(t)", zlab="r(t)")
|
||||
plot(pointsgraph[pointsgraph[,1]==1,][,-1],type="l",main="Temps 1",
|
||||
xlab="Duration (t)",
|
||||
ylab="r(t)",ylim=c(0,10))
|
||||
points(temps,taux[,1])
|
||||
plot(pointsgraph[pointsgraph[,1]==61,][,-1],type="l",main="Temps 61",
|
||||
xlab="Duration (t)",
|
||||
ylab="r(t)",ylim=c(0,10))
|
||||
points(temps,taux[,61])
|
||||
plot(pointsgraph[pointsgraph[,1]==121,][,-1],type="l",main="Temps 121",
|
||||
xlab="Duration (t)",
|
||||
ylab="r(t)",ylim=c(0,10))
|
||||
points(temps,taux[,121])
|
||||
plot(pointsgraph[pointsgraph[,1]==181,][,-1],type="l",main="Temps 181",
|
||||
xlab="Duration (t)",
|
||||
ylab="r(t)",ylim=c(0,10))
|
||||
points(temps,taux[,181])
|
||||
dev.off()
|
24
nelsonsiegel.r.Rout
Normal file
24
nelsonsiegel.r.Rout
Normal file
|
@ -0,0 +1,24 @@
|
|||
|
||||
R version 2.15.2 (2012-10-26) -- "Trick or Treat"
|
||||
Copyright (C) 2012 The R Foundation for Statistical Computing
|
||||
ISBN 3-900051-07-0
|
||||
Platform: x86_64-pc-linux-gnu (64-bit)
|
||||
|
||||
R est un logiciel libre livré sans AUCUNE GARANTIE.
|
||||
Vous pouvez le redistribuer sous certaines conditions.
|
||||
Tapez 'license()' ou 'licence()' pour plus de détails.
|
||||
|
||||
R est un projet collaboratif avec de nombreux contributeurs.
|
||||
Tapez 'contributors()' pour plus d'information et
|
||||
'citation()' pour la façon de le citer dans les publications.
|
||||
|
||||
Tapez 'demo()' pour des démonstrations, 'help()' pour l'aide
|
||||
en ligne ou 'help.start()' pour obtenir l'aide au format HTML.
|
||||
Tapez 'q()' pour quitter R.
|
||||
|
||||
[Sauvegarde de la session précédente restaurée]
|
||||
|
||||
> library("scatterplot3d")
|
||||
Erreur dans library("scatterplot3d") :
|
||||
aucun package nommé ‘scatterplot3d’ n'est trouvé
|
||||
Exécution arrêtée
|
113
pca.r
Executable file
113
pca.r
Executable file
|
@ -0,0 +1,113 @@
|
|||
## principal component analysis
|
||||
## données .25,2,3,5,10,30 ans USGG pris sur Bloomberg
|
||||
|
||||
## librairies
|
||||
library("xtable")
|
||||
|
||||
yc <- data.matrix(read.table("usgg.csv",header=T, sep=";",na.strings = "#NA"))[,-1]
|
||||
dt <- yc[,7]
|
||||
yc <- yc[,-7]
|
||||
time <- c(.25,2,3,5,10,30)
|
||||
yc.center <- t(t(yc)-apply(yc,2,mean))
|
||||
|
||||
## plot des séries
|
||||
pdf("PCA-tseries.pdf")
|
||||
par(mfrow=c(3,2))
|
||||
ts.plot(yc[,1], main="90 jours")
|
||||
ts.plot(yc[,2], main="2 ans")
|
||||
ts.plot(yc[,3], main="3 ans")
|
||||
ts.plot(yc[,4], main="5 ans")
|
||||
ts.plot(yc[,5], main="10 ans")
|
||||
ts.plot(yc[,6], main="30 ans")
|
||||
dev.off()
|
||||
|
||||
## plot de l'observation 1
|
||||
pdf("PCA-observation1.pdf")
|
||||
plot(time,yc[1,],type="l")
|
||||
|
||||
## plot de l'observation 1 avec spline
|
||||
lines(spline(time,yc[1,]),type="l", col="red")
|
||||
dev.off()
|
||||
## différenciation
|
||||
yc.diff <- diff(yc.center)
|
||||
|
||||
##
|
||||
## Approche #1 (cov)
|
||||
##
|
||||
|
||||
## matrice de variance covariance des différences
|
||||
yc.diff.vcov <- cov(yc.diff)
|
||||
|
||||
## matrice P (vecteurs propres)
|
||||
P <- eigen(yc.diff.vcov)$vectors
|
||||
sink("PCA-Pcov.tex",append=FALSE,split=FALSE)
|
||||
xtable(P,digits=4)
|
||||
sink()
|
||||
## valeurs propres (variance par composant)
|
||||
lambda <- eigen(yc.diff.vcov)$values
|
||||
sink("PCA-lambdacov.tex",append=FALSE,split=FALSE)
|
||||
xtable(t(as.matrix(lambda)),digits=4)
|
||||
sink()
|
||||
## écart-type par composant
|
||||
sq.lambda <- sqrt(lambda)
|
||||
|
||||
## variance totale (trace de la matrice de valeurs propres)
|
||||
totvar <- sum(lambda)
|
||||
|
||||
## fraction expliquée par composante
|
||||
lambda/totvar
|
||||
sink("PCA-prcov.tex",append=FALSE,split=FALSE)
|
||||
xtable(t(as.matrix(lambda/totvar)),digits=4)
|
||||
sink()
|
||||
|
||||
##
|
||||
## Approche #2 (corr)
|
||||
##
|
||||
|
||||
## matrice de corrélations des différences
|
||||
yc.diff.corr <- cor(yc.diff)
|
||||
## matrice P (vecteurs propres)
|
||||
Pcorr <- eigen(yc.diff.corr)$vectors
|
||||
sink("PCA-Pcorr.tex",append=FALSE,split=FALSE)
|
||||
xtable(Pcorr,digits=4)
|
||||
sink()
|
||||
## valeurs propres (variance par composant)
|
||||
lambda.corr <- eigen(yc.diff.corr)$values
|
||||
sink("PCA-lambdacorr.tex",append=FALSE,split=FALSE)
|
||||
xtable(t(as.matrix(lambda.corr)),digits=4)
|
||||
sink()
|
||||
## écart-type par composant
|
||||
sq.lambda.corr <- sqrt(lambda.corr)
|
||||
## variance totale (trace de la matrice de valeurs propres)
|
||||
totvar.corr <- sum(lambda.corr)
|
||||
## fraction expliquée par composante
|
||||
lambda.corr/totvar.corr
|
||||
sink("PCA-prcorr.tex",append=FALSE,split=FALSE)
|
||||
xtable(t(as.matrix(lambda.corr/totvar.corr)),digits=4)
|
||||
sink()
|
||||
|
||||
## graphiques (3 premieres composantes: parallel shift, tilt, curvature)
|
||||
pdf("PCA-composantes1-2-3.pdf")
|
||||
par(mfrow=c(2,3))
|
||||
plot(time,P[,1],col="blue", ylim=c(-1,1), type="l")
|
||||
plot(time,P[,2],col="blue", ylim=c(-1,1), type="l")
|
||||
plot(time,P[,3],col="blue", ylim=c(-1,1), type="l")
|
||||
plot(time,Pcorr[,1],col="red", ylim=c(-1,1), type="l")
|
||||
plot(time,Pcorr[,2],col="red", ylim=c(-1,1), type="l")
|
||||
plot(time,Pcorr[,3],col="red", ylim=c(-1,1), type="l")
|
||||
dev.off()
|
||||
|
||||
## produits Score (volatilité expliquée par composante)
|
||||
Score <- yc.center %*% P
|
||||
Scorecorr <- yc.center %*% Pcorr
|
||||
pdf("PCA-score.pdf")
|
||||
par(mfrow=c(2,1))
|
||||
ts.plot(Score,col="blue")
|
||||
ts.plot(Scorecorr,col="red")
|
||||
dev.off()
|
||||
|
||||
## utilisation de la fonction princomp pour fins de comparaison
|
||||
yc.princomp <- prcomp(yc.diff)
|
||||
pdf("PCA-verif-princomp.pdf")
|
||||
plot(yc.princomp, type="l")
|
||||
dev.off()
|
27
pca.r.Rout
Normal file
27
pca.r.Rout
Normal file
|
@ -0,0 +1,27 @@
|
|||
|
||||
R version 2.15.2 (2012-10-26) -- "Trick or Treat"
|
||||
Copyright (C) 2012 The R Foundation for Statistical Computing
|
||||
ISBN 3-900051-07-0
|
||||
Platform: x86_64-pc-linux-gnu (64-bit)
|
||||
|
||||
R est un logiciel libre livré sans AUCUNE GARANTIE.
|
||||
Vous pouvez le redistribuer sous certaines conditions.
|
||||
Tapez 'license()' ou 'licence()' pour plus de détails.
|
||||
|
||||
R est un projet collaboratif avec de nombreux contributeurs.
|
||||
Tapez 'contributors()' pour plus d'information et
|
||||
'citation()' pour la façon de le citer dans les publications.
|
||||
|
||||
Tapez 'demo()' pour des démonstrations, 'help()' pour l'aide
|
||||
en ligne ou 'help.start()' pour obtenir l'aide au format HTML.
|
||||
Tapez 'q()' pour quitter R.
|
||||
|
||||
[Sauvegarde de la session précédente restaurée]
|
||||
|
||||
> ## principal component analysis
|
||||
> ## données .25,2,3,5,10,30 ans USGG pris sur Bloomberg
|
||||
>
|
||||
> ## librairies
|
||||
> library("xtable")
|
||||
Erreur dans library("xtable") : aucun package nommé ‘xtable’ n'est trouvé
|
||||
Exécution arrêtée
|
289
presentation-beamer.aux
Normal file
289
presentation-beamer.aux
Normal file
|
@ -0,0 +1,289 @@
|
|||
\relax
|
||||
\providecommand\HyperFirstAtBeginDocument{\AtBeginDocument}
|
||||
\HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined
|
||||
\global\let\oldcontentsline\contentsline
|
||||
\gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}}
|
||||
\global\let\oldnewlabel\newlabel
|
||||
\gdef\newlabel#1#2{\newlabelxx{#1}#2}
|
||||
\gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}}
|
||||
\AtEndDocument{\ifx\hyper@anchor\@undefined
|
||||
\let\contentsline\oldcontentsline
|
||||
\let\newlabel\oldnewlabel
|
||||
\fi}
|
||||
\fi}
|
||||
\global\let\hyper@last\relax
|
||||
\gdef\HyperFirstAtBeginDocument#1{#1}
|
||||
\providecommand\HyField@AuxAddToFields[1]{}
|
||||
\catcode`:\active
|
||||
\catcode`;\active
|
||||
\catcode`!\active
|
||||
\catcode`?\active
|
||||
\@writefile{toc}{\beamer@endinputifotherversion {3.10pt}}
|
||||
\@writefile{nav}{\beamer@endinputifotherversion {3.10pt}}
|
||||
\select@language{french}
|
||||
\@writefile{toc}{\select@language{french}}
|
||||
\@writefile{lof}{\select@language{french}}
|
||||
\@writefile{lot}{\select@language{french}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {0}{0}{1}{1/1}{}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {1}{1}}}
|
||||
\@writefile{toc}{\beamer@sectionintoc {1}{Introduction}{2}{0}{1}}
|
||||
\@writefile{nav}{\headcommand {\sectionentry {1}{Introduction}{2}{Introduction}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@sectionpages {1}{1}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@subsectionpages {1}{1}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {1}{0}{2}{2/5}{}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {2}{5}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {1}{0}{3}{6/7}{}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {6}{7}}}
|
||||
\@writefile{toc}{\beamer@sectionintoc {2}{Courbes param\IeC {\'e}triques}{8}{0}{2}}
|
||||
\@writefile{nav}{\headcommand {\sectionentry {2}{Courbes param\IeC {\'e}triques}{8}{Courbes param\IeC {\'e}triques}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@sectionpages {2}{7}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@subsectionpages {2}{7}}}
|
||||
\@writefile{toc}{\beamer@subsectionintoc {2}{1}{Survol de la m\IeC {\'e}thode et utilisation}{8}{0}{2}}
|
||||
\@writefile{nav}{\headcommand {\beamer@subsectionentry {0}{2}{1}{8}{Survol de la m\IeC {\'e}thode et utilisation}}\headcommand {\beamer@subsectionpages {8}{7}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {2}{1}{1}{8/8}{Survol de la m\IeC {\'e}thode et utilisation}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {8}{8}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {2}{1}{2}{9/12}{Survol de la m\IeC {\'e}thode et utilisation}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {9}{12}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {2}{1}{3}{13/16}{Survol de la m\IeC {\'e}thode et utilisation}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {13}{16}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {2}{1}{4}{17/20}{Survol de la m\IeC {\'e}thode et utilisation}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {17}{20}}}
|
||||
\@writefile{toc}{\beamer@subsectionintoc {2}{2}{Courbe de Nelson-Siegel}{21}{0}{2}}
|
||||
\@writefile{nav}{\headcommand {\beamer@subsectionentry {0}{2}{2}{21}{Courbe de Nelson-Siegel}}\headcommand {\beamer@subsectionpages {8}{20}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {2}{2}{1}{21/21}{Courbe de Nelson-Siegel}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {21}{21}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {2}{2}{2}{22/23}{Courbe de Nelson-Siegel}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {22}{23}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {2}{2}{3}{24/24}{Courbe de Nelson-Siegel}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {24}{24}}}
|
||||
\@writefile{toc}{\beamer@subsectionintoc {2}{3}{Analyse empirique}{25}{0}{2}}
|
||||
\@writefile{nav}{\headcommand {\beamer@subsectionentry {0}{2}{3}{25}{Analyse empirique}}\headcommand {\beamer@subsectionpages {21}{24}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {2}{3}{1}{25/25}{Analyse empirique}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {25}{25}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {2}{3}{2}{26/29}{Analyse empirique}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {26}{29}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {2}{3}{3}{30/33}{Analyse empirique}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {30}{33}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {2}{3}{4}{34/34}{Analyse empirique}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {34}{34}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {2}{3}{5}{35/35}{Analyse empirique}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {35}{35}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {2}{3}{6}{36/36}{Analyse empirique}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {36}{36}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {2}{3}{7}{37/37}{Analyse empirique}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {37}{37}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {2}{3}{8}{38/39}{Analyse empirique}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {38}{39}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {2}{3}{9}{40/40}{Analyse empirique}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {40}{40}}}
|
||||
\@writefile{toc}{\beamer@subsectionintoc {2}{4}{Conclusion}{41}{0}{2}}
|
||||
\@writefile{nav}{\headcommand {\beamer@subsectionentry {0}{2}{4}{41}{Conclusion}}\headcommand {\beamer@subsectionpages {25}{40}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {2}{4}{1}{41/41}{Conclusion}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {41}{41}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {2}{4}{2}{42/46}{Conclusion}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {42}{46}}}
|
||||
\@writefile{toc}{\beamer@sectionintoc {3}{Analyse de composantes principales}{47}{0}{3}}
|
||||
\@writefile{nav}{\headcommand {\sectionentry {3}{Analyse de composantes principales}{47}{Analyse de composantes principales}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@sectionpages {8}{46}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@subsectionpages {41}{46}}}
|
||||
\@writefile{toc}{\beamer@subsectionintoc {3}{1}{Survol de la m\IeC {\'e}thode et utilisation}{47}{0}{3}}
|
||||
\@writefile{nav}{\headcommand {\beamer@subsectionentry {0}{3}{1}{47}{Survol de la m\IeC {\'e}thode et utilisation}}\headcommand {\beamer@subsectionpages {47}{46}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {3}{1}{1}{47/47}{Survol de la m\IeC {\'e}thode et utilisation}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {47}{47}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {3}{1}{2}{48/50}{Survol de la m\IeC {\'e}thode et utilisation}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {48}{50}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {3}{1}{3}{51/53}{Survol de la m\IeC {\'e}thode et utilisation}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {51}{53}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {3}{1}{4}{54/54}{Survol de la m\IeC {\'e}thode et utilisation}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {54}{54}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {3}{1}{5}{55/55}{Survol de la m\IeC {\'e}thode et utilisation}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {55}{55}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {3}{1}{6}{56/58}{Survol de la m\IeC {\'e}thode et utilisation}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {56}{58}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {3}{1}{7}{59/60}{Survol de la m\IeC {\'e}thode et utilisation}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {59}{60}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {3}{1}{8}{61/63}{Survol de la m\IeC {\'e}thode et utilisation}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {61}{63}}}
|
||||
\@writefile{toc}{\beamer@subsectionintoc {3}{2}{Analyse empirique}{64}{0}{3}}
|
||||
\@writefile{nav}{\headcommand {\beamer@subsectionentry {0}{3}{2}{64}{Analyse empirique}}\headcommand {\beamer@subsectionpages {47}{63}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {3}{2}{1}{64/64}{Analyse empirique}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {64}{64}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {3}{2}{2}{65/67}{Analyse empirique}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {65}{67}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {3}{2}{3}{68/68}{Analyse empirique}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {68}{68}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {3}{2}{4}{69/69}{Analyse empirique}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {69}{69}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {3}{2}{5}{70/70}{Analyse empirique}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {70}{70}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {3}{2}{6}{71/71}{Analyse empirique}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {71}{71}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {3}{2}{7}{72/72}{Analyse empirique}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {72}{72}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {3}{2}{8}{73/73}{Analyse empirique}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {73}{73}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {3}{2}{9}{74/74}{Analyse empirique}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {74}{74}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {3}{2}{10}{75/75}{Analyse empirique}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {75}{75}}}
|
||||
\@writefile{toc}{\beamer@subsectionintoc {3}{3}{Conclusion}{76}{0}{3}}
|
||||
\@writefile{nav}{\headcommand {\beamer@subsectionentry {0}{3}{3}{76}{Conclusion}}\headcommand {\beamer@subsectionpages {64}{75}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {3}{3}{1}{76/76}{Conclusion}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {76}{76}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {3}{3}{2}{77/79}{Conclusion}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {77}{79}}}
|
||||
\@writefile{toc}{\beamer@sectionintoc {4}{M\IeC {\'e}thode des moments}{80}{0}{4}}
|
||||
\@writefile{nav}{\headcommand {\sectionentry {4}{M\IeC {\'e}thode des moments}{80}{M\IeC {\'e}thode des moments}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@sectionpages {47}{79}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@subsectionpages {76}{79}}}
|
||||
\@writefile{toc}{\beamer@subsectionintoc {4}{1}{Description de la m\IeC {\'e}thode}{80}{0}{4}}
|
||||
\@writefile{nav}{\headcommand {\beamer@subsectionentry {0}{4}{1}{80}{Description de la m\IeC {\'e}thode}}\headcommand {\beamer@subsectionpages {80}{79}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {4}{1}{1}{80/80}{Description de la m\IeC {\'e}thode}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {80}{80}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {4}{1}{2}{81/83}{Description de la m\IeC {\'e}thode}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {81}{83}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {4}{1}{3}{84/86}{Description de la m\IeC {\'e}thode}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {84}{86}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {4}{1}{4}{87/91}{Description de la m\IeC {\'e}thode}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {87}{91}}}
|
||||
\@writefile{toc}{\beamer@subsectionintoc {4}{2}{Mod\IeC {\`e}les de taux d'int\IeC {\'e}r\IeC {\^e}t court-terme}{92}{0}{4}}
|
||||
\@writefile{nav}{\headcommand {\beamer@subsectionentry {0}{4}{2}{92}{Mod\IeC {\`e}les de taux d'int\IeC {\'e}r\IeC {\^e}t court-terme}}\headcommand {\beamer@subsectionpages {80}{91}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {4}{2}{1}{92/92}{Mod\IeC {\`e}les de taux d'int\IeC {\'e}r\IeC {\^e}t court-terme}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {92}{92}}}
|
||||
\@writefile{snm}{\beamer@slide {eq:vasicek}{93}}
|
||||
\newlabel{eq:vasicek}{{1}{93}{Modèles de taux d'intérêt court-terme\relax }{Doc-Start}{}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {4}{2}{2}{93/95}{Mod\IeC {\`e}les de taux d'int\IeC {\'e}r\IeC {\^e}t court-terme}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {93}{95}}}
|
||||
\@writefile{snm}{\beamer@slide {eq:CIR}{96}}
|
||||
\newlabel{eq:CIR}{{2}{96}{Modèles de taux d'intérêt court-terme\relax }{Doc-Start}{}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {4}{2}{3}{96/97}{Mod\IeC {\`e}les de taux d'int\IeC {\'e}r\IeC {\^e}t court-terme}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {96}{97}}}
|
||||
\@writefile{snm}{\beamer@slide {eq:CKLS}{98}}
|
||||
\newlabel{eq:CKLS}{{3}{98}{Modèles de taux d'intérêt court-terme\relax }{Doc-Start}{}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {4}{2}{4}{98/98}{Mod\IeC {\`e}les de taux d'int\IeC {\'e}r\IeC {\^e}t court-terme}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {98}{98}}}
|
||||
\@writefile{toc}{\beamer@subsectionintoc {4}{3}{D\IeC {\'e}tails de la m\IeC {\'e}thode}{99}{0}{4}}
|
||||
\@writefile{nav}{\headcommand {\beamer@subsectionentry {0}{4}{3}{99}{D\IeC {\'e}tails de la m\IeC {\'e}thode}}\headcommand {\beamer@subsectionpages {92}{98}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {4}{3}{1}{99/99}{D\IeC {\'e}tails de la m\IeC {\'e}thode}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {99}{99}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {4}{3}{2}{100/101}{D\IeC {\'e}tails de la m\IeC {\'e}thode}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {100}{101}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {4}{3}{3}{102/104}{D\IeC {\'e}tails de la m\IeC {\'e}thode}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {102}{104}}}
|
||||
\newlabel{eq:moments1}{{5}{105}{Détails de la méthode\relax }{Doc-Start}{}}
|
||||
\@writefile{snm}{\beamer@slide {eq:moments1}{105}}
|
||||
\newlabel{eq:moments2}{{6}{105}{Détails de la méthode\relax }{Doc-Start}{}}
|
||||
\@writefile{snm}{\beamer@slide {eq:moments2}{105}}
|
||||
\newlabel{eq:momentscr1}{{7}{105}{Détails de la méthode\relax }{Doc-Start}{}}
|
||||
\@writefile{snm}{\beamer@slide {eq:momentscr1}{105}}
|
||||
\newlabel{eq:momentscr2}{{8}{105}{Détails de la méthode\relax }{Doc-Start}{}}
|
||||
\@writefile{snm}{\beamer@slide {eq:momentscr2}{105}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {4}{3}{4}{105/106}{D\IeC {\'e}tails de la m\IeC {\'e}thode}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {105}{106}}}
|
||||
\newlabel{eq:momentsemp1}{{9}{107}{Détails de la méthode\relax }{Doc-Start}{}}
|
||||
\@writefile{snm}{\beamer@slide {eq:momentsemp1}{107}}
|
||||
\newlabel{eq:momentsemp2}{{10}{107}{Détails de la méthode\relax }{Doc-Start}{}}
|
||||
\@writefile{snm}{\beamer@slide {eq:momentsemp2}{107}}
|
||||
\newlabel{eq:momentsemp3}{{11}{107}{Détails de la méthode\relax }{Doc-Start}{}}
|
||||
\@writefile{snm}{\beamer@slide {eq:momentsemp3}{107}}
|
||||
\newlabel{eq:momentsemp4}{{12}{107}{Détails de la méthode\relax }{Doc-Start}{}}
|
||||
\@writefile{snm}{\beamer@slide {eq:momentsemp4}{107}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {4}{3}{5}{107/107}{D\IeC {\'e}tails de la m\IeC {\'e}thode}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {107}{107}}}
|
||||
\@writefile{snm}{\beamer@slide {eq:objectif1}{108}}
|
||||
\newlabel{eq:objectif1}{{13}{108}{Détails de la méthode\relax }{Doc-Start}{}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {4}{3}{6}{108/108}{D\IeC {\'e}tails de la m\IeC {\'e}thode}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {108}{108}}}
|
||||
\@writefile{snm}{\beamer@slide {eq:objectif2}{109}}
|
||||
\newlabel{eq:objectif2}{{14}{109}{Détails de la méthode\relax }{Doc-Start}{}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {4}{3}{7}{109/109}{D\IeC {\'e}tails de la m\IeC {\'e}thode}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {109}{109}}}
|
||||
\@writefile{snm}{\beamer@slide {eq:omega0}{110}}
|
||||
\newlabel{eq:omega0}{{15}{110}{Détails de la méthode\relax }{Doc-Start}{}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {4}{3}{8}{110/110}{D\IeC {\'e}tails de la m\IeC {\'e}thode}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {110}{110}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {4}{3}{9}{111/113}{D\IeC {\'e}tails de la m\IeC {\'e}thode}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {111}{113}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {4}{3}{10}{114/114}{D\IeC {\'e}tails de la m\IeC {\'e}thode}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {114}{114}}}
|
||||
\@writefile{snm}{\beamer@slide {eq:varparam}{115}}
|
||||
\newlabel{eq:varparam}{{18}{115}{Détails de la méthode\relax }{Doc-Start}{}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {4}{3}{11}{115/115}{D\IeC {\'e}tails de la m\IeC {\'e}thode}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {115}{115}}}
|
||||
\@writefile{toc}{\beamer@subsectionintoc {4}{4}{Donn\IeC {\'e}es utilis\IeC {\'e}es}{116}{0}{4}}
|
||||
\@writefile{nav}{\headcommand {\beamer@subsectionentry {0}{4}{4}{116}{Donn\IeC {\'e}es utilis\IeC {\'e}es}}\headcommand {\beamer@subsectionpages {99}{115}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {4}{4}{1}{116/116}{Donn\IeC {\'e}es utilis\IeC {\'e}es}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {116}{116}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {4}{4}{2}{117/117}{Donn\IeC {\'e}es utilis\IeC {\'e}es}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {117}{117}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {4}{4}{3}{118/118}{Donn\IeC {\'e}es utilis\IeC {\'e}es}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {118}{118}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {4}{4}{4}{119/119}{Donn\IeC {\'e}es utilis\IeC {\'e}es}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {119}{119}}}
|
||||
\@writefile{toc}{\beamer@subsectionintoc {4}{5}{Applications}{120}{0}{4}}
|
||||
\@writefile{nav}{\headcommand {\beamer@subsectionentry {0}{4}{5}{120}{Applications}}\headcommand {\beamer@subsectionpages {116}{119}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {4}{5}{1}{120/120}{Applications}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {120}{120}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {4}{5}{2}{121/121}{Applications}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {121}{121}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {4}{5}{3}{122/122}{Applications}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {122}{122}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {4}{5}{4}{123/123}{Applications}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {123}{123}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {4}{5}{5}{124/124}{Applications}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {124}{124}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {4}{5}{6}{125/125}{Applications}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {125}{125}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {4}{5}{7}{126/126}{Applications}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {126}{126}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {4}{5}{8}{127/129}{Applications}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {127}{129}}}
|
||||
\@writefile{toc}{\beamer@sectionintoc {5}{M\IeC {\'e}thode du maximum de vraisemblance}{130}{0}{5}}
|
||||
\@writefile{nav}{\headcommand {\sectionentry {5}{M\IeC {\'e}thode du maximum de vraisemblance}{130}{M\IeC {\'e}thode du maximum de vraisemblance}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@sectionpages {80}{129}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@subsectionpages {120}{129}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {5}{0}{9}{130/131}{}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {130}{131}}}
|
||||
\@writefile{toc}{\beamer@subsectionintoc {5}{1}{Application aux mod\IeC {\`e}les}{132}{0}{5}}
|
||||
\@writefile{nav}{\headcommand {\beamer@subsectionentry {0}{5}{1}{132}{Application aux mod\IeC {\`e}les}}\headcommand {\beamer@subsectionpages {130}{131}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {5}{1}{1}{132/132}{Application aux mod\IeC {\`e}les}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {132}{132}}}
|
||||
\@writefile{snm}{\beamer@slide {eq:distVas}{133}}
|
||||
\newlabel{eq:distVas}{{19}{133}{Application aux modèles\relax }{Doc-Start}{}}
|
||||
\@writefile{snm}{\beamer@slide {eq:objVas}{133}}
|
||||
\newlabel{eq:objVas}{{20}{133}{Application aux modèles\relax }{Doc-Start}{}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {5}{1}{2}{133/133}{Application aux mod\IeC {\`e}les}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {133}{133}}}
|
||||
\@writefile{snm}{\beamer@slide {eq:distCIR}{134}}
|
||||
\newlabel{eq:distCIR}{{21}{134}{Application aux modèles\relax }{Doc-Start}{}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {5}{1}{3}{134/134}{Application aux mod\IeC {\`e}les}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {134}{134}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {5}{1}{4}{135/135}{Application aux mod\IeC {\`e}les}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {135}{135}}}
|
||||
\@writefile{snm}{\beamer@slide {eq:chisqCIR}{136}}
|
||||
\newlabel{eq:chisqCIR}{{22}{136}{Application aux modèles\relax }{Doc-Start}{}}
|
||||
\@writefile{snm}{\beamer@slide {eq:objCIR}{136}}
|
||||
\newlabel{eq:objCIR}{{23}{136}{Application aux modèles\relax }{Doc-Start}{}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {5}{1}{5}{136/136}{Application aux mod\IeC {\`e}les}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {136}{136}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {5}{1}{6}{137/137}{Application aux mod\IeC {\`e}les}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {137}{137}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {5}{1}{7}{138/138}{Application aux mod\IeC {\`e}les}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {138}{138}}}
|
||||
\@writefile{toc}{\beamer@subsectionintoc {5}{2}{Estimation}{139}{0}{5}}
|
||||
\@writefile{nav}{\headcommand {\beamer@subsectionentry {0}{5}{2}{139}{Estimation}}\headcommand {\beamer@subsectionpages {132}{138}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {5}{2}{1}{139/139}{Estimation}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {139}{139}}}
|
||||
\newlabel{tab:estimParam}{{7}{140}{Estimation\relax }{Doc-Start}{}}
|
||||
\@writefile{snm}{\beamer@slide {tab:estimParam}{140}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {5}{2}{2}{140/140}{Estimation}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {140}{140}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {5}{2}{3}{141/141}{Estimation}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {141}{141}}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {5}{2}{4}{142/142}{Estimation}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {142}{142}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@partpages {1}{142}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@subsectionpages {139}{142}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@sectionpages {130}{142}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@documentpages {142}}}
|
||||
\@writefile{nav}{\headcommand {\def \inserttotalframenumber {84}}}
|
1621
presentation-beamer.log
Normal file
1621
presentation-beamer.log
Normal file
File diff suppressed because it is too large
Load diff
203
presentation-beamer.nav
Normal file
203
presentation-beamer.nav
Normal file
|
@ -0,0 +1,203 @@
|
|||
\beamer@endinputifotherversion {3.10pt}
|
||||
\headcommand {\slideentry {0}{0}{1}{1/1}{}{0}}
|
||||
\headcommand {\beamer@framepages {1}{1}}
|
||||
\headcommand {\sectionentry {1}{Introduction}{2}{Introduction}{0}}
|
||||
\headcommand {\beamer@sectionpages {1}{1}}
|
||||
\headcommand {\beamer@subsectionpages {1}{1}}
|
||||
\headcommand {\slideentry {1}{0}{2}{2/5}{}{0}}
|
||||
\headcommand {\beamer@framepages {2}{5}}
|
||||
\headcommand {\slideentry {1}{0}{3}{6/7}{}{0}}
|
||||
\headcommand {\beamer@framepages {6}{7}}
|
||||
\headcommand {\sectionentry {2}{Courbes param\IeC {\'e}triques}{8}{Courbes param\IeC {\'e}triques}{0}}
|
||||
\headcommand {\beamer@sectionpages {2}{7}}
|
||||
\headcommand {\beamer@subsectionpages {2}{7}}
|
||||
\headcommand {\beamer@subsectionentry {0}{2}{1}{8}{Survol de la m\IeC {\'e}thode et utilisation}}\headcommand {\beamer@subsectionpages {8}{7}}
|
||||
\headcommand {\slideentry {2}{1}{1}{8/8}{Survol de la m\IeC {\'e}thode et utilisation}{0}}
|
||||
\headcommand {\beamer@framepages {8}{8}}
|
||||
\headcommand {\slideentry {2}{1}{2}{9/12}{Survol de la m\IeC {\'e}thode et utilisation}{0}}
|
||||
\headcommand {\beamer@framepages {9}{12}}
|
||||
\headcommand {\slideentry {2}{1}{3}{13/16}{Survol de la m\IeC {\'e}thode et utilisation}{0}}
|
||||
\headcommand {\beamer@framepages {13}{16}}
|
||||
\headcommand {\slideentry {2}{1}{4}{17/20}{Survol de la m\IeC {\'e}thode et utilisation}{0}}
|
||||
\headcommand {\beamer@framepages {17}{20}}
|
||||
\headcommand {\beamer@subsectionentry {0}{2}{2}{21}{Courbe de Nelson-Siegel}}\headcommand {\beamer@subsectionpages {8}{20}}
|
||||
\headcommand {\slideentry {2}{2}{1}{21/21}{Courbe de Nelson-Siegel}{0}}
|
||||
\headcommand {\beamer@framepages {21}{21}}
|
||||
\headcommand {\slideentry {2}{2}{2}{22/23}{Courbe de Nelson-Siegel}{0}}
|
||||
\headcommand {\beamer@framepages {22}{23}}
|
||||
\headcommand {\slideentry {2}{2}{3}{24/24}{Courbe de Nelson-Siegel}{0}}
|
||||
\headcommand {\beamer@framepages {24}{24}}
|
||||
\headcommand {\beamer@subsectionentry {0}{2}{3}{25}{Analyse empirique}}\headcommand {\beamer@subsectionpages {21}{24}}
|
||||
\headcommand {\slideentry {2}{3}{1}{25/25}{Analyse empirique}{0}}
|
||||
\headcommand {\beamer@framepages {25}{25}}
|
||||
\headcommand {\slideentry {2}{3}{2}{26/29}{Analyse empirique}{0}}
|
||||
\headcommand {\beamer@framepages {26}{29}}
|
||||
\headcommand {\slideentry {2}{3}{3}{30/33}{Analyse empirique}{0}}
|
||||
\headcommand {\beamer@framepages {30}{33}}
|
||||
\headcommand {\slideentry {2}{3}{4}{34/34}{Analyse empirique}{0}}
|
||||
\headcommand {\beamer@framepages {34}{34}}
|
||||
\headcommand {\slideentry {2}{3}{5}{35/35}{Analyse empirique}{0}}
|
||||
\headcommand {\beamer@framepages {35}{35}}
|
||||
\headcommand {\slideentry {2}{3}{6}{36/36}{Analyse empirique}{0}}
|
||||
\headcommand {\beamer@framepages {36}{36}}
|
||||
\headcommand {\slideentry {2}{3}{7}{37/37}{Analyse empirique}{0}}
|
||||
\headcommand {\beamer@framepages {37}{37}}
|
||||
\headcommand {\slideentry {2}{3}{8}{38/39}{Analyse empirique}{0}}
|
||||
\headcommand {\beamer@framepages {38}{39}}
|
||||
\headcommand {\slideentry {2}{3}{9}{40/40}{Analyse empirique}{0}}
|
||||
\headcommand {\beamer@framepages {40}{40}}
|
||||
\headcommand {\beamer@subsectionentry {0}{2}{4}{41}{Conclusion}}\headcommand {\beamer@subsectionpages {25}{40}}
|
||||
\headcommand {\slideentry {2}{4}{1}{41/41}{Conclusion}{0}}
|
||||
\headcommand {\beamer@framepages {41}{41}}
|
||||
\headcommand {\slideentry {2}{4}{2}{42/46}{Conclusion}{0}}
|
||||
\headcommand {\beamer@framepages {42}{46}}
|
||||
\headcommand {\sectionentry {3}{Analyse de composantes principales}{47}{Analyse de composantes principales}{0}}
|
||||
\headcommand {\beamer@sectionpages {8}{46}}
|
||||
\headcommand {\beamer@subsectionpages {41}{46}}
|
||||
\headcommand {\beamer@subsectionentry {0}{3}{1}{47}{Survol de la m\IeC {\'e}thode et utilisation}}\headcommand {\beamer@subsectionpages {47}{46}}
|
||||
\headcommand {\slideentry {3}{1}{1}{47/47}{Survol de la m\IeC {\'e}thode et utilisation}{0}}
|
||||
\headcommand {\beamer@framepages {47}{47}}
|
||||
\headcommand {\slideentry {3}{1}{2}{48/50}{Survol de la m\IeC {\'e}thode et utilisation}{0}}
|
||||
\headcommand {\beamer@framepages {48}{50}}
|
||||
\headcommand {\slideentry {3}{1}{3}{51/53}{Survol de la m\IeC {\'e}thode et utilisation}{0}}
|
||||
\headcommand {\beamer@framepages {51}{53}}
|
||||
\headcommand {\slideentry {3}{1}{4}{54/54}{Survol de la m\IeC {\'e}thode et utilisation}{0}}
|
||||
\headcommand {\beamer@framepages {54}{54}}
|
||||
\headcommand {\slideentry {3}{1}{5}{55/55}{Survol de la m\IeC {\'e}thode et utilisation}{0}}
|
||||
\headcommand {\beamer@framepages {55}{55}}
|
||||
\headcommand {\slideentry {3}{1}{6}{56/58}{Survol de la m\IeC {\'e}thode et utilisation}{0}}
|
||||
\headcommand {\beamer@framepages {56}{58}}
|
||||
\headcommand {\slideentry {3}{1}{7}{59/60}{Survol de la m\IeC {\'e}thode et utilisation}{0}}
|
||||
\headcommand {\beamer@framepages {59}{60}}
|
||||
\headcommand {\slideentry {3}{1}{8}{61/63}{Survol de la m\IeC {\'e}thode et utilisation}{0}}
|
||||
\headcommand {\beamer@framepages {61}{63}}
|
||||
\headcommand {\beamer@subsectionentry {0}{3}{2}{64}{Analyse empirique}}\headcommand {\beamer@subsectionpages {47}{63}}
|
||||
\headcommand {\slideentry {3}{2}{1}{64/64}{Analyse empirique}{0}}
|
||||
\headcommand {\beamer@framepages {64}{64}}
|
||||
\headcommand {\slideentry {3}{2}{2}{65/67}{Analyse empirique}{0}}
|
||||
\headcommand {\beamer@framepages {65}{67}}
|
||||
\headcommand {\slideentry {3}{2}{3}{68/68}{Analyse empirique}{0}}
|
||||
\headcommand {\beamer@framepages {68}{68}}
|
||||
\headcommand {\slideentry {3}{2}{4}{69/69}{Analyse empirique}{0}}
|
||||
\headcommand {\beamer@framepages {69}{69}}
|
||||
\headcommand {\slideentry {3}{2}{5}{70/70}{Analyse empirique}{0}}
|
||||
\headcommand {\beamer@framepages {70}{70}}
|
||||
\headcommand {\slideentry {3}{2}{6}{71/71}{Analyse empirique}{0}}
|
||||
\headcommand {\beamer@framepages {71}{71}}
|
||||
\headcommand {\slideentry {3}{2}{7}{72/72}{Analyse empirique}{0}}
|
||||
\headcommand {\beamer@framepages {72}{72}}
|
||||
\headcommand {\slideentry {3}{2}{8}{73/73}{Analyse empirique}{0}}
|
||||
\headcommand {\beamer@framepages {73}{73}}
|
||||
\headcommand {\slideentry {3}{2}{9}{74/74}{Analyse empirique}{0}}
|
||||
\headcommand {\beamer@framepages {74}{74}}
|
||||
\headcommand {\slideentry {3}{2}{10}{75/75}{Analyse empirique}{0}}
|
||||
\headcommand {\beamer@framepages {75}{75}}
|
||||
\headcommand {\beamer@subsectionentry {0}{3}{3}{76}{Conclusion}}\headcommand {\beamer@subsectionpages {64}{75}}
|
||||
\headcommand {\slideentry {3}{3}{1}{76/76}{Conclusion}{0}}
|
||||
\headcommand {\beamer@framepages {76}{76}}
|
||||
\headcommand {\slideentry {3}{3}{2}{77/79}{Conclusion}{0}}
|
||||
\headcommand {\beamer@framepages {77}{79}}
|
||||
\headcommand {\sectionentry {4}{M\IeC {\'e}thode des moments}{80}{M\IeC {\'e}thode des moments}{0}}
|
||||
\headcommand {\beamer@sectionpages {47}{79}}
|
||||
\headcommand {\beamer@subsectionpages {76}{79}}
|
||||
\headcommand {\beamer@subsectionentry {0}{4}{1}{80}{Description de la m\IeC {\'e}thode}}\headcommand {\beamer@subsectionpages {80}{79}}
|
||||
\headcommand {\slideentry {4}{1}{1}{80/80}{Description de la m\IeC {\'e}thode}{0}}
|
||||
\headcommand {\beamer@framepages {80}{80}}
|
||||
\headcommand {\slideentry {4}{1}{2}{81/83}{Description de la m\IeC {\'e}thode}{0}}
|
||||
\headcommand {\beamer@framepages {81}{83}}
|
||||
\headcommand {\slideentry {4}{1}{3}{84/86}{Description de la m\IeC {\'e}thode}{0}}
|
||||
\headcommand {\beamer@framepages {84}{86}}
|
||||
\headcommand {\slideentry {4}{1}{4}{87/91}{Description de la m\IeC {\'e}thode}{0}}
|
||||
\headcommand {\beamer@framepages {87}{91}}
|
||||
\headcommand {\beamer@subsectionentry {0}{4}{2}{92}{Mod\IeC {\`e}les de taux d'int\IeC {\'e}r\IeC {\^e}t court-terme}}\headcommand {\beamer@subsectionpages {80}{91}}
|
||||
\headcommand {\slideentry {4}{2}{1}{92/92}{Mod\IeC {\`e}les de taux d'int\IeC {\'e}r\IeC {\^e}t court-terme}{0}}
|
||||
\headcommand {\beamer@framepages {92}{92}}
|
||||
\headcommand {\slideentry {4}{2}{2}{93/95}{Mod\IeC {\`e}les de taux d'int\IeC {\'e}r\IeC {\^e}t court-terme}{0}}
|
||||
\headcommand {\beamer@framepages {93}{95}}
|
||||
\headcommand {\slideentry {4}{2}{3}{96/97}{Mod\IeC {\`e}les de taux d'int\IeC {\'e}r\IeC {\^e}t court-terme}{0}}
|
||||
\headcommand {\beamer@framepages {96}{97}}
|
||||
\headcommand {\slideentry {4}{2}{4}{98/98}{Mod\IeC {\`e}les de taux d'int\IeC {\'e}r\IeC {\^e}t court-terme}{0}}
|
||||
\headcommand {\beamer@framepages {98}{98}}
|
||||
\headcommand {\beamer@subsectionentry {0}{4}{3}{99}{D\IeC {\'e}tails de la m\IeC {\'e}thode}}\headcommand {\beamer@subsectionpages {92}{98}}
|
||||
\headcommand {\slideentry {4}{3}{1}{99/99}{D\IeC {\'e}tails de la m\IeC {\'e}thode}{0}}
|
||||
\headcommand {\beamer@framepages {99}{99}}
|
||||
\headcommand {\slideentry {4}{3}{2}{100/101}{D\IeC {\'e}tails de la m\IeC {\'e}thode}{0}}
|
||||
\headcommand {\beamer@framepages {100}{101}}
|
||||
\headcommand {\slideentry {4}{3}{3}{102/104}{D\IeC {\'e}tails de la m\IeC {\'e}thode}{0}}
|
||||
\headcommand {\beamer@framepages {102}{104}}
|
||||
\headcommand {\slideentry {4}{3}{4}{105/106}{D\IeC {\'e}tails de la m\IeC {\'e}thode}{0}}
|
||||
\headcommand {\beamer@framepages {105}{106}}
|
||||
\headcommand {\slideentry {4}{3}{5}{107/107}{D\IeC {\'e}tails de la m\IeC {\'e}thode}{0}}
|
||||
\headcommand {\beamer@framepages {107}{107}}
|
||||
\headcommand {\slideentry {4}{3}{6}{108/108}{D\IeC {\'e}tails de la m\IeC {\'e}thode}{0}}
|
||||
\headcommand {\beamer@framepages {108}{108}}
|
||||
\headcommand {\slideentry {4}{3}{7}{109/109}{D\IeC {\'e}tails de la m\IeC {\'e}thode}{0}}
|
||||
\headcommand {\beamer@framepages {109}{109}}
|
||||
\headcommand {\slideentry {4}{3}{8}{110/110}{D\IeC {\'e}tails de la m\IeC {\'e}thode}{0}}
|
||||
\headcommand {\beamer@framepages {110}{110}}
|
||||
\headcommand {\slideentry {4}{3}{9}{111/113}{D\IeC {\'e}tails de la m\IeC {\'e}thode}{0}}
|
||||
\headcommand {\beamer@framepages {111}{113}}
|
||||
\headcommand {\slideentry {4}{3}{10}{114/114}{D\IeC {\'e}tails de la m\IeC {\'e}thode}{0}}
|
||||
\headcommand {\beamer@framepages {114}{114}}
|
||||
\headcommand {\slideentry {4}{3}{11}{115/115}{D\IeC {\'e}tails de la m\IeC {\'e}thode}{0}}
|
||||
\headcommand {\beamer@framepages {115}{115}}
|
||||
\headcommand {\beamer@subsectionentry {0}{4}{4}{116}{Donn\IeC {\'e}es utilis\IeC {\'e}es}}\headcommand {\beamer@subsectionpages {99}{115}}
|
||||
\headcommand {\slideentry {4}{4}{1}{116/116}{Donn\IeC {\'e}es utilis\IeC {\'e}es}{0}}
|
||||
\headcommand {\beamer@framepages {116}{116}}
|
||||
\headcommand {\slideentry {4}{4}{2}{117/117}{Donn\IeC {\'e}es utilis\IeC {\'e}es}{0}}
|
||||
\headcommand {\beamer@framepages {117}{117}}
|
||||
\headcommand {\slideentry {4}{4}{3}{118/118}{Donn\IeC {\'e}es utilis\IeC {\'e}es}{0}}
|
||||
\headcommand {\beamer@framepages {118}{118}}
|
||||
\headcommand {\slideentry {4}{4}{4}{119/119}{Donn\IeC {\'e}es utilis\IeC {\'e}es}{0}}
|
||||
\headcommand {\beamer@framepages {119}{119}}
|
||||
\headcommand {\beamer@subsectionentry {0}{4}{5}{120}{Applications}}\headcommand {\beamer@subsectionpages {116}{119}}
|
||||
\headcommand {\slideentry {4}{5}{1}{120/120}{Applications}{0}}
|
||||
\headcommand {\beamer@framepages {120}{120}}
|
||||
\headcommand {\slideentry {4}{5}{2}{121/121}{Applications}{0}}
|
||||
\headcommand {\beamer@framepages {121}{121}}
|
||||
\headcommand {\slideentry {4}{5}{3}{122/122}{Applications}{0}}
|
||||
\headcommand {\beamer@framepages {122}{122}}
|
||||
\headcommand {\slideentry {4}{5}{4}{123/123}{Applications}{0}}
|
||||
\headcommand {\beamer@framepages {123}{123}}
|
||||
\headcommand {\slideentry {4}{5}{5}{124/124}{Applications}{0}}
|
||||
\headcommand {\beamer@framepages {124}{124}}
|
||||
\headcommand {\slideentry {4}{5}{6}{125/125}{Applications}{0}}
|
||||
\headcommand {\beamer@framepages {125}{125}}
|
||||
\headcommand {\slideentry {4}{5}{7}{126/126}{Applications}{0}}
|
||||
\headcommand {\beamer@framepages {126}{126}}
|
||||
\headcommand {\slideentry {4}{5}{8}{127/129}{Applications}{0}}
|
||||
\headcommand {\beamer@framepages {127}{129}}
|
||||
\headcommand {\sectionentry {5}{M\IeC {\'e}thode du maximum de vraisemblance}{130}{M\IeC {\'e}thode du maximum de vraisemblance}{0}}
|
||||
\headcommand {\beamer@sectionpages {80}{129}}
|
||||
\headcommand {\beamer@subsectionpages {120}{129}}
|
||||
\headcommand {\slideentry {5}{0}{9}{130/131}{}{0}}
|
||||
\headcommand {\beamer@framepages {130}{131}}
|
||||
\headcommand {\beamer@subsectionentry {0}{5}{1}{132}{Application aux mod\IeC {\`e}les}}\headcommand {\beamer@subsectionpages {130}{131}}
|
||||
\headcommand {\slideentry {5}{1}{1}{132/132}{Application aux mod\IeC {\`e}les}{0}}
|
||||
\headcommand {\beamer@framepages {132}{132}}
|
||||
\headcommand {\slideentry {5}{1}{2}{133/133}{Application aux mod\IeC {\`e}les}{0}}
|
||||
\headcommand {\beamer@framepages {133}{133}}
|
||||
\headcommand {\slideentry {5}{1}{3}{134/134}{Application aux mod\IeC {\`e}les}{0}}
|
||||
\headcommand {\beamer@framepages {134}{134}}
|
||||
\headcommand {\slideentry {5}{1}{4}{135/135}{Application aux mod\IeC {\`e}les}{0}}
|
||||
\headcommand {\beamer@framepages {135}{135}}
|
||||
\headcommand {\slideentry {5}{1}{5}{136/136}{Application aux mod\IeC {\`e}les}{0}}
|
||||
\headcommand {\beamer@framepages {136}{136}}
|
||||
\headcommand {\slideentry {5}{1}{6}{137/137}{Application aux mod\IeC {\`e}les}{0}}
|
||||
\headcommand {\beamer@framepages {137}{137}}
|
||||
\headcommand {\slideentry {5}{1}{7}{138/138}{Application aux mod\IeC {\`e}les}{0}}
|
||||
\headcommand {\beamer@framepages {138}{138}}
|
||||
\headcommand {\beamer@subsectionentry {0}{5}{2}{139}{Estimation}}\headcommand {\beamer@subsectionpages {132}{138}}
|
||||
\headcommand {\slideentry {5}{2}{1}{139/139}{Estimation}{0}}
|
||||
\headcommand {\beamer@framepages {139}{139}}
|
||||
\headcommand {\slideentry {5}{2}{2}{140/140}{Estimation}{0}}
|
||||
\headcommand {\beamer@framepages {140}{140}}
|
||||
\headcommand {\slideentry {5}{2}{3}{141/141}{Estimation}{0}}
|
||||
\headcommand {\beamer@framepages {141}{141}}
|
||||
\headcommand {\slideentry {5}{2}{4}{142/142}{Estimation}{0}}
|
||||
\headcommand {\beamer@framepages {142}{142}}
|
||||
\headcommand {\beamer@partpages {1}{142}}
|
||||
\headcommand {\beamer@subsectionpages {139}{142}}
|
||||
\headcommand {\beamer@sectionpages {130}{142}}
|
||||
\headcommand {\beamer@documentpages {142}}
|
||||
\headcommand {\def \inserttotalframenumber {84}}
|
19
presentation-beamer.out
Normal file
19
presentation-beamer.out
Normal file
|
@ -0,0 +1,19 @@
|
|||
\BOOKMARK [2][]{Outline0.1}{Introduction}{}% 1
|
||||
\BOOKMARK [2][]{Outline0.2}{Courbes param\351triques}{}% 2
|
||||
\BOOKMARK [3][]{Outline0.2.1.8}{Survol de la m\351thode et utilisation}{Outline0.2}% 3
|
||||
\BOOKMARK [3][]{Outline0.2.2.21}{Courbe de Nelson-Siegel}{Outline0.2}% 4
|
||||
\BOOKMARK [3][]{Outline0.2.3.25}{Analyse empirique}{Outline0.2}% 5
|
||||
\BOOKMARK [3][]{Outline0.2.4.41}{Conclusion}{Outline0.2}% 6
|
||||
\BOOKMARK [2][]{Outline0.3}{Analyse de composantes principales}{}% 7
|
||||
\BOOKMARK [3][]{Outline0.3.1.47}{Survol de la m\351thode et utilisation}{Outline0.3}% 8
|
||||
\BOOKMARK [3][]{Outline0.3.2.64}{Analyse empirique}{Outline0.3}% 9
|
||||
\BOOKMARK [3][]{Outline0.3.3.76}{Conclusion}{Outline0.3}% 10
|
||||
\BOOKMARK [2][]{Outline0.4}{M\351thode des moments}{}% 11
|
||||
\BOOKMARK [3][]{Outline0.4.1.80}{Description de la m\351thode}{Outline0.4}% 12
|
||||
\BOOKMARK [3][]{Outline0.4.2.92}{Mod\350les de taux d'int\351r\352t court-terme}{Outline0.4}% 13
|
||||
\BOOKMARK [3][]{Outline0.4.3.99}{D\351tails de la m\351thode}{Outline0.4}% 14
|
||||
\BOOKMARK [3][]{Outline0.4.4.116}{Donn\351es utilis\351es}{Outline0.4}% 15
|
||||
\BOOKMARK [3][]{Outline0.4.5.120}{Applications}{Outline0.4}% 16
|
||||
\BOOKMARK [2][]{Outline0.5}{M\351thode du maximum de vraisemblance}{}% 17
|
||||
\BOOKMARK [3][]{Outline0.5.1.132}{Application aux mod\350les}{Outline0.5}% 18
|
||||
\BOOKMARK [3][]{Outline0.5.2.139}{Estimation}{Outline0.5}% 19
|
BIN
presentation-beamer.pdf
Executable file
BIN
presentation-beamer.pdf
Executable file
Binary file not shown.
21
presentation-beamer.snm
Normal file
21
presentation-beamer.snm
Normal file
|
@ -0,0 +1,21 @@
|
|||
\beamer@slide {eq:vasicek}{93}
|
||||
\beamer@slide {eq:CIR}{96}
|
||||
\beamer@slide {eq:CKLS}{98}
|
||||
\beamer@slide {eq:moments1}{105}
|
||||
\beamer@slide {eq:moments2}{105}
|
||||
\beamer@slide {eq:momentscr1}{105}
|
||||
\beamer@slide {eq:momentscr2}{105}
|
||||
\beamer@slide {eq:momentsemp1}{107}
|
||||
\beamer@slide {eq:momentsemp2}{107}
|
||||
\beamer@slide {eq:momentsemp3}{107}
|
||||
\beamer@slide {eq:momentsemp4}{107}
|
||||
\beamer@slide {eq:objectif1}{108}
|
||||
\beamer@slide {eq:objectif2}{109}
|
||||
\beamer@slide {eq:omega0}{110}
|
||||
\beamer@slide {eq:varparam}{115}
|
||||
\beamer@slide {eq:distVas}{133}
|
||||
\beamer@slide {eq:objVas}{133}
|
||||
\beamer@slide {eq:distCIR}{134}
|
||||
\beamer@slide {eq:chisqCIR}{136}
|
||||
\beamer@slide {eq:objCIR}{136}
|
||||
\beamer@slide {tab:estimParam}{140}
|
763
presentation-beamer.tex
Executable file
763
presentation-beamer.tex
Executable file
|
@ -0,0 +1,763 @@
|
|||
\documentclass{beamer}
|
||||
|
||||
\usepackage[francais]{babel}
|
||||
\usepackage[utf8]{inputenc} \usepackage{ae,aeguill}
|
||||
\usepackage{amsmath} \usepackage{graphicx}
|
||||
\usepackage{hyperref}
|
||||
\usepackage{amsfonts}
|
||||
\usepackage{verbatim}
|
||||
\usepackage{lscape}
|
||||
\usepackage{tabularx}
|
||||
\newcommand{\sumin}{\sum_{i=1}^n}
|
||||
\newcommand{\sumjn}{\sum_{j=1}^n}
|
||||
\newcommand{\nsumin}{\frac{1}{n} \sum_{i=1}^n}
|
||||
\newcommand{\nsumjn}{\frac{1}{n} \sum_{j=1}^n}
|
||||
\newcommand{\sqnsumin}{\frac{1}{sqrt{n}} \sum_{i=1}^n}
|
||||
\newcommand{\sumiNt}{\sum_{i=1}^{N(t)}}
|
||||
\newcommand{\fxt}{f(x;\theta)}
|
||||
\newcommand{\gxt}{g(x;\theta)}
|
||||
\usetheme{Warsaw}
|
||||
|
||||
|
||||
\begin{document}
|
||||
\AtBeginSubsection[]
|
||||
{
|
||||
\begin{frame}<beamer>
|
||||
\frametitle{Plan de présentation}
|
||||
\tiny{
|
||||
\tableofcontents[currentsection,currentsubsection]}
|
||||
\end{frame}
|
||||
}
|
||||
|
||||
\begin{frame}
|
||||
\textsc{\LARGE Université Laval}\\[1.5cm]
|
||||
|
||||
\textsc{\Large ACT-7006: Sujets Spéciaux I}\\[1.5cm]
|
||||
|
||||
\emph{Par:}\\
|
||||
François \textsc{Pelletier}
|
||||
\end{frame}
|
||||
|
||||
\section{Introduction}
|
||||
|
||||
\begin{frame}
|
||||
\begin{itemize}[<+->]
|
||||
\item Courbes paramétriques (survol)
|
||||
\item Analyse de composantes principales (survol)
|
||||
\item Méthode des moments généralisée
|
||||
\item Méthode du maximum de vraisemblance
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
Survol des méthodes de
|
||||
\begin{itemize}[<+->]
|
||||
\item Interest rate modelling, \\ James, J. and Webber, N., 2000 \\ (chapitres 15,16,17)
|
||||
\item Statistical models and methods for financial markets, \\Lai, T.L. and Xing, H., 2008 \\ (référence supplémentaire)
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\section{Courbes paramétriques}
|
||||
|
||||
\subsection{Survol de la méthode et utilisation}
|
||||
|
||||
\begin{frame}{Caractéristiques}
|
||||
|
||||
\begin{itemize}[<+->]
|
||||
\item Approximation des taux d'intérêt à partir de points connus
|
||||
\item Données en coupe transversale
|
||||
\item Aucune valeur prédictive
|
||||
\item Interpolation
|
||||
\end{itemize}
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Types de courbes}
|
||||
|
||||
\begin{itemize}[<+->]
|
||||
\item Splines cubiques et splines de lissage
|
||||
\item Courbes de Nelson et Siegel
|
||||
\item Fonction de base $\phi_k(\tau)$
|
||||
\item K paramètres $\lambda_k$, formant une somme
|
||||
\end{itemize}
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Splines}
|
||||
|
||||
\begin{itemize}[<+->]
|
||||
\item Fonctions polynomiales
|
||||
\item Une fonction différente entre chaque points connus
|
||||
\item Basée sur la correspondance de dérivées premières
|
||||
\item Demande l'estimation de nombreux paramètres
|
||||
\end{itemize}
|
||||
|
||||
\end{frame}
|
||||
|
||||
\subsection{Courbe de Nelson-Siegel}
|
||||
|
||||
\begin{frame}
|
||||
|
||||
\begin{itemize}[<+->]
|
||||
\item Taux à terme
|
||||
\begin{eqnarray*}
|
||||
f_0(\tau,t) = \beta_{0t}+(\beta_{1t}+\beta_{2t}\tau)e^{-\beta_{3t}\tau} \\
|
||||
\end{eqnarray*}
|
||||
\item Taux instantanés
|
||||
\begin{eqnarray*}
|
||||
r(\tau,t) = \beta_{0t}+(\beta_{1t}+\beta_{2t}\tau)e^{-\beta_{3t}\tau} \\
|
||||
\end{eqnarray*}
|
||||
\end{itemize}
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
Si on utilise la forme précédente pour modéliser le taux à terme, le taux instantané devient la moyenne pondérée des taux à terme
|
||||
\begin{eqnarray*}
|
||||
r(\tau,t) &=& \frac{1}{\tau} \int_0^\tau f_0(s) ds \\
|
||||
&=& \beta_0 + (\beta_{1t}+\frac{\beta_{2t}}{\beta_{3t}})\frac{1-e^{-\beta_{3t}{\tau}}}{\beta_{3t}\tau}-\frac{\beta_{2t}}{\beta_{3t}}e^{-\beta_{3t}\tau} \\
|
||||
\end{eqnarray*}
|
||||
\end{frame}
|
||||
|
||||
\subsection{Analyse empirique}
|
||||
|
||||
\begin{frame}{Données}
|
||||
\begin{itemize}[<+->]
|
||||
\item Taux composite des bons du trésor américain
|
||||
\item Entre le 3 janvier 1990 et le 15 février 2012
|
||||
\item Intervalle de 30 jours
|
||||
\item 192 observations
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Méthode}
|
||||
\begin{itemize}[<+->]
|
||||
\item Méthode des moindres carrés ordinaires
|
||||
\item On note $O_\tau^{(t)}$ le taux instantané observé pour la duration $\tau$ au temps $t$
|
||||
\item Équation d'estimation
|
||||
\begin{eqnarray*}
|
||||
\sum_{\tau} (O_\tau^{(t)} - r(\tau,t))^2
|
||||
\end{eqnarray*}
|
||||
\item On doit minimiser la valeur de cette expression pour obtenir les meilleurs estimateurs de \\
|
||||
$\mathbf{\beta} = [\beta_0,\beta_1,\beta_2,\beta_3]$.
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Graphiques}
|
||||
Temps $t=1$\\
|
||||
\includegraphics[scale=0.25,page=2]{nelsonsiegel-plots.pdf}
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Graphiques}
|
||||
Temps $t=61$\\
|
||||
\includegraphics[scale=0.25,page=3]{nelsonsiegel-plots.pdf}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Graphiques}
|
||||
Temps $t=121$\\
|
||||
\includegraphics[scale=0.25,page=4]{nelsonsiegel-plots.pdf}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Graphiques}
|
||||
Temps $t=181$\\
|
||||
\includegraphics[scale=0.25,page=5]{nelsonsiegel-plots.pdf}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{En résumé}
|
||||
\begin{itemize}[<+->]
|
||||
\item S'adapte bien aux formes concaves
|
||||
\item Mais non aux formes convexes ou avec un point d'inflexion
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{En résumé}
|
||||
Pour les 192 observations, \\de gauche à droite \\
|
||||
\includegraphics[scale=0.25,page=1]{nelsonsiegel-plots.pdf}
|
||||
\end{frame}
|
||||
|
||||
\subsection{Conclusion}
|
||||
|
||||
\begin{frame}{Conclusion}
|
||||
\begin{itemize}[<+->]
|
||||
\item utiles pour faire de l'interpolation
|
||||
\item pas des modèles robustes
|
||||
\item Résultats erronées si les données n'ont pas certaines caractéristiques de régularité
|
||||
\item Courbes de Nelson-Siegel :faciles à estimer
|
||||
\item Courbes de Svensson plus flexibles : plusieurs paramètres supplémentaires
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\section{Analyse de composantes principales}
|
||||
|
||||
\subsection{Survol de la méthode et utilisation}
|
||||
|
||||
\begin{frame}{But}
|
||||
|
||||
\begin{itemize}[<+->]
|
||||
\item Identifier différents facteurs qui peuvent causer la volatilité à l'intérieur d'une série chronologique multivariée
|
||||
\item Modèle à facteurs multiples : analyse est particulièrement complexe
|
||||
\item Survol rapide
|
||||
\end{itemize}
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Notation}
|
||||
|
||||
\begin{itemize}[<+->]
|
||||
\item Observations sous la forme $r_{t_i}(\tau_j)$
|
||||
\item $t_i$ est le temps, de $1$ à $n+1$
|
||||
\item $j$ est le nombre d'observations en coupe transversale
|
||||
\end{itemize}
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Differenciation}
|
||||
|
||||
\begin{itemize}[<+->]
|
||||
\item Pour observer la volatilité: données différenciées:
|
||||
\begin{eqnarray*}
|
||||
d_{i,j} = r_{t_{i+1}}(\tau_j) - r_{t_{i}}(\tau_j)
|
||||
\end{eqnarray*}
|
||||
\end{itemize}
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Matrice de variance-covariance $\Sigma$}
|
||||
\begin{eqnarray*}
|
||||
\Sigma &=& \left[
|
||||
\begin{array}{cccc}
|
||||
var(d_1) & cov(d_1,d_2) & \cdots & cov(d_1,d_k) \\
|
||||
cov(d_2,d_1)& var(d_2) & \ddots & \vdots \\
|
||||
\vdots & & \ddots & \vdots \\
|
||||
cov(d_k,d_1) & \cdots & \cdots & var(d_k) \\
|
||||
\end{array}\right]
|
||||
\end{eqnarray*}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Valeurs et vecteurs propres}
|
||||
\begin{itemize}[<+->]
|
||||
\item Matrice $\mathbf{P}$ telle que sa transposée est également son inverse
|
||||
\item La matrice de vecteurs propres de $\Sigma$
|
||||
\item Vecteur $\mathbf{\lambda}$ contenant les valeurs propres
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Composantes et variance expliquée}
|
||||
\begin{itemize}[<+->]
|
||||
\item $\mathbf{P}$ : matrice de composantes principales
|
||||
\item $\mathbf{\lambda}$ : vecteur des variances expliquées par chacune des composantes principales, en ordre décroissant.
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\begin{itemize}[<+->]
|
||||
\item Analyse visuelle
|
||||
\item taux d'intérêt: 3 premières composantes
|
||||
\item 2 méthodes: matrice de covariance et matrice de corrélations
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\subsection{Analyse empirique}
|
||||
|
||||
\begin{frame}{Données}
|
||||
\begin{itemize}[<+->]
|
||||
\item Taux composite des bons du trésor américain entre le 3 janvier 1990 et le 15 février 2012
|
||||
\item Intervalle quotidien
|
||||
\item Obligations de 90 jours, 2 ans, 3 ans, 5 ans, 10 ans et 30 ans
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Données}
|
||||
\begin{figure}[c]
|
||||
\centering
|
||||
\includegraphics[scale=0.25]{PCA-tseries.pdf}
|
||||
\caption{Séries observées}
|
||||
\end{figure}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Méthode covariance: Composantes principales}
|
||||
Vecteurs propres $\mathbf{P}$
|
||||
\input{PCA-Pcov}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Méthode covariance: Variance expliquée}
|
||||
Valeurs propres $\mathbf{\lambda}$
|
||||
\input{PCA-lambdacov}
|
||||
Proportions
|
||||
\input{PCA-prcov}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Méthode corrélation: Composantes principales}
|
||||
Vecteurs propres $\mathbf{P}$
|
||||
\input{PCA-Pcorr}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Méthode corrélation: Variance expliquée}
|
||||
Valeurs propres $\mathbf{\lambda}$
|
||||
\input{PCA-lambdacorr}
|
||||
Proportions
|
||||
\input{PCA-prcorr}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Comparaison des deux approches}
|
||||
\begin{figure}[c]
|
||||
\centering
|
||||
\includegraphics[scale=0.25]{PCA-composantes1-2-3.pdf}
|
||||
\caption{Composantes pour les deux approches}
|
||||
\end{figure}
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Volatilité expliquée par composante (score)}
|
||||
\begin{eqnarray*}
|
||||
Score(t) &=& r(t) \times \mathbf{P}\\
|
||||
\end{eqnarray*}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Volatilité expliquée par composante (score)}
|
||||
\begin{figure}[c]
|
||||
\centering
|
||||
\includegraphics[scale=0.25]{PCA-score.pdf}
|
||||
\caption{Score}
|
||||
\end{figure}
|
||||
\end{frame}
|
||||
|
||||
\subsection{Conclusion}
|
||||
|
||||
\begin{frame}
|
||||
\begin{itemize}[<+->]
|
||||
\item Parralel shift: changements qui affectent l'ensemble de la courbe
|
||||
\item Tilt: variations à court terme et influence inverse à long terme
|
||||
\item Flex: forme plus ou moins concave
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\section{Méthode des moments}
|
||||
|
||||
\subsection{Description de la méthode}
|
||||
|
||||
\begin{frame}{Définition}
|
||||
\begin{itemize}[<+->]
|
||||
\item technique d'estimation paramétrique
|
||||
\item fonctions d'estimation basée sur moments empiriques
|
||||
\item condition d'orthogonalité
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Déf. formelle}
|
||||
\begin{itemize}[<+->]
|
||||
\item vecteur de $k$ paramètres $\theta = (\theta_1, \ldots, \theta_k)'$
|
||||
\item $f = (f_1, \ldots, f_m) $, un vecteur de $m, m\geq k$ fonctions $f_i(r_t | \theta)$ de l'échantillon $r_t$
|
||||
\item $E[f_i(r_t | \theta)] = 0$
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\begin{itemize}[<+->]
|
||||
\item $\hat{\theta} = argmin(\theta,f' \times W \times f)$
|
||||
\item Matrice de pondération définie positive $W$
|
||||
\item MCO: $W$ est la matrice identité
|
||||
\item MCG: Information de Fisher empirique
|
||||
\item GMM: l'estimateur robuste de Newey and West
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\subsection{Modèles de taux d'intérêt court-terme}
|
||||
|
||||
\begin{frame}{Modèle de Vasicek}
|
||||
\begin{itemize}[<+->]
|
||||
\item EDS
|
||||
\begin{equation} \label{eq:vasicek}
|
||||
dr_t = a(b-r_t)\, dt + \sigma \, dW_t
|
||||
\end{equation}
|
||||
\item Solution
|
||||
\begin{eqnarray*}
|
||||
r(t) = r(0) e^{-a t} + b \left(1- e^{-a t}\right) + \sigma e^{-a t}\int_0^t e^{a s}\,dW_s.\,\!
|
||||
\end{eqnarray*}
|
||||
\item Moyenne et variance
|
||||
\begin{eqnarray*}
|
||||
\mathrm{E}[r_t] &=& r_0 e^{-a t} + b(1 - e^{-at}) \\
|
||||
\mathrm{Var}[r_t] &=& \frac{\sigma^2}{2 a}(1 - e^{-2at}) \\
|
||||
\lim_{t\rightarrow \infty} \mathrm{E}[r_t] &=& b \\
|
||||
\lim_{t\rightarrow \infty} \mathrm{Var}[r_t] &=& \frac{\sigma^2}{2 a} \\
|
||||
\end{eqnarray*}
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Modèle de Cox, Ingersoll et Ross}
|
||||
\begin{itemize}[<+->]
|
||||
\item EDS
|
||||
\begin{equation}
|
||||
\label{eq:CIR}
|
||||
dr_t = a(b-r_t)\, dt + \sigma\sqrt{r_t}\, dW_t
|
||||
\end{equation}
|
||||
\item Moyenne et variance
|
||||
\begin{eqnarray*}
|
||||
E[r_t|r_0] &=& r_0 e^{-\theta t} + \mu (1-e^{-\theta t}) \\
|
||||
Var[r_t|r_0] &=& r_0 \frac{\sigma^2}{\theta} (e^{-\theta t}-e^{-2\theta t}) + \frac{\mu\sigma^2}{2\theta}(1-e^{-\theta t})^2 \\
|
||||
\end{eqnarray*}
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Modèle de Chan, Karolyi, Longstaff et Sanders}
|
||||
\begin{itemize}[<+->]
|
||||
\item EDS
|
||||
\begin{equation}
|
||||
\label{eq:CKLS}
|
||||
dr_t = a(b-r_t)\, dt + \sigma r_t^{\gamma}\, dW_t
|
||||
\end{equation}
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\subsection{Détails de la méthode}
|
||||
|
||||
|
||||
\begin{frame}{Discrétisation}
|
||||
\begin{itemize}[<+->]
|
||||
\item Méthode d'Euler
|
||||
\item Pour le modèle CKLS, on obtient
|
||||
\begin{equation}
|
||||
r_{t+1} = a + br_t+\sigma r_t^{\gamma}u_{t-1}
|
||||
\end{equation}
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Conditions}
|
||||
\begin{itemize}[<+->]
|
||||
\item On fixe
|
||||
\begin{eqnarray*}
|
||||
\epsilon_{t+1} &=& r_{t+1} - (a+br_t) \\
|
||||
&=& \sigma r_t^{\gamma}u_{t-1} \\
|
||||
\end{eqnarray*}
|
||||
\item $\epsilon_{t+1} \sim N(0,\sigma^2 r_t^{2\gamma}\Delta t)$
|
||||
\item $\epsilon_{t+1}$ n'est pas corrélé avec $r_t$
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Conditions de moments utilisées}
|
||||
\begin{itemize}[<+->]
|
||||
\item Moyenne et variance
|
||||
\begin{eqnarray}
|
||||
\label{eq:moments1}
|
||||
E[\epsilon_{t+1}] &=& 0 \\
|
||||
\label{eq:moments2}
|
||||
E[\epsilon_{t+1}^2 - \sigma^2r_t^{2\gamma}\Delta t] &=& 0
|
||||
\end{eqnarray}
|
||||
\item Corrélations
|
||||
\begin{eqnarray}
|
||||
\label{eq:momentscr1}
|
||||
E[\epsilon_{t+1}r_t] &=& 0 \\
|
||||
\label{eq:momentscr2}
|
||||
E[(\epsilon_{t+1}^2 - \sigma^2r_t^{2\gamma}\Delta t)r_t] &=& 0
|
||||
\end{eqnarray}
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Moments empiriques}
|
||||
\begin{eqnarray}
|
||||
\label{eq:momentsemp1}
|
||||
f_1 &=& \nsumin (r_{t+1} - a - br_t) \\
|
||||
\label{eq:momentsemp2}
|
||||
f_1 &=& \nsumin (r_{t+1} - a - br_t)^2 - \sigma^2r_t^{2\gamma}\Delta t \\
|
||||
\label{eq:momentsemp3}
|
||||
f_1 &=& \nsumin (r_{t+1} - a - br_t)r_t \\
|
||||
\label{eq:momentsemp4}
|
||||
f_1 &=& \nsumin ((r_{t+1} - a - br_t)- \sigma^2r_t^{2\gamma}\Delta t)r_t
|
||||
\end{eqnarray}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Équation d'estimation}
|
||||
\begin{equation}
|
||||
\label{eq:objectif1}
|
||||
J(a,b,\sigma,\gamma) = f'f = \sum_{i=1}^4 f_i^2
|
||||
\end{equation}
|
||||
On fait ici une hypothèse forte d'absence de corrélation et d'homoscédasticité des erreurs
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Moindres carrés pondérés}
|
||||
\begin{equation}
|
||||
\label{eq:objectif2}
|
||||
J(a,b,\sigma,\gamma) = f'W f
|
||||
\end{equation}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Matrice $W$ optimale}
|
||||
\begin{equation}
|
||||
\label{eq:omega0}
|
||||
\hat{\Omega_0} = \frac{1}{T} \sum_{t=1}^T \hat{f_t}^2
|
||||
\end{equation}
|
||||
Un meilleur choix est l'estimateur de Newey-West
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Estimateur de Newey-West}
|
||||
L'estimateur de Newey-West prend la forme
|
||||
|
||||
\begin{eqnarray}
|
||||
\hat{S_T} &=& \sum_{j=1}^m (1-\frac{j}{m-1})[\hat{\Omega_j}+\hat{\Omega_j}'] \\
|
||||
\hat{\Omega_j} &=& \frac{1}{T} \sum_{t=j+1}^T \hat{f_t}\hat{f_{t-j}}
|
||||
\end{eqnarray}
|
||||
|
||||
\begin{itemize}[<+->]
|
||||
\item $m$ est le nombre de pas de temps de décalage utilisés
|
||||
\item $\hat{\Omega_j}$ est une matrice d'autocovariance entre la série de données et la même série mais décalée de $j$ pas de temps
|
||||
\item Le rôle du coefficient ($1-\frac{j}{m-1})$ est de s'assurer que la matrice est semi-définie positive
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Jacobien des moments}
|
||||
Pour former les statistiques de diagnostic. Pour CKLS:
|
||||
\begin{eqnarray*}
|
||||
\frac{df}{d\theta} &=&
|
||||
\left[ \begin{array}{cccc}
|
||||
\frac{\partial f_1}{\partial a} & \frac{\partial f_1}{\partial b} & \frac{\partial f_1}{\partial \sigma} & \frac{\partial f_1}{\partial \gamma} \\
|
||||
\frac{\partial f_2}{\partial a} & \frac{\partial f_2}{\partial b} & \frac{\partial f_2}{\partial \sigma} & \frac{\partial f_2}{\partial \gamma} \\
|
||||
\frac{\partial f_3}{\partial a} & \frac{\partial f_3}{\partial b} & \frac{\partial f_3}{\partial \sigma} & \frac{\partial f_3}{\partial \gamma} \\
|
||||
\frac{\partial f_4}{\partial a} & \frac{\partial f_4}{\partial b} & \frac{\partial f_4}{\partial \sigma} & \frac{\partial f_4}{\partial \gamma} \\
|
||||
\end{array} \right] \\
|
||||
\end{eqnarray*}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Statistique de Student (t)}
|
||||
On utilise ici la méthode delta pour construire la matrice de variance-covariance des paramètres
|
||||
\begin{equation}
|
||||
\label{eq:varparam}
|
||||
V = \frac{df}{d\hat{\theta}} W \frac{df}{d\hat{\theta}}'
|
||||
\end{equation}
|
||||
On prend la diagonale (variances) pour calculer les statistiques de Student
|
||||
\begin{eqnarray*}
|
||||
t &=& \frac{\theta_i}{\sqrt{V_{ii}}}
|
||||
\end{eqnarray*}
|
||||
\end{frame}
|
||||
|
||||
\subsection{Données utilisées}
|
||||
|
||||
\begin{frame}
|
||||
Les données utilisées sont des données mensuelles entre les dates suivantes
|
||||
\verbatiminput{GMM-dates.txt}
|
||||
\end{frame}
|
||||
\begin{frame}
|
||||
La série se décrit visuellement comme suit:
|
||||
\includegraphics[scale=0.25]{serieGMM.pdf}
|
||||
\end{frame}
|
||||
\begin{frame}
|
||||
Les statistiques descriptives de base de la série sont:
|
||||
\verbatiminput{summaryDonneesGMM.txt}
|
||||
\end{frame}
|
||||
|
||||
\subsection{Applications}
|
||||
|
||||
\begin{frame}{Modèle CKLS estimé avec GMM}
|
||||
% latex table generated in R 2.13.1 by xtable 1.7-0 package
|
||||
% Thu Apr 5 23:12:29 2012
|
||||
\begin{table}[ht]
|
||||
\begin{center}
|
||||
\begin{tabular}{rrrr}
|
||||
\hline
|
||||
& Est. param. & T-Stat & p-value \\
|
||||
\hline
|
||||
a & 0.02320 & 22.30001 & 0.00000 \\
|
||||
b & -0.58973 & 14.27554 & 0.00000 \\
|
||||
sigma & 0.03416 & 72953440.38807 & 0.00000 \\
|
||||
gamma & 0.96593 & 372870417.22069 & 0.00000 \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\caption{Modèle CKLS estimé avec GMM}
|
||||
\end{center}
|
||||
\end{table}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Modèle Vasicek estimé avec GMM}
|
||||
% latex table generated in R 2.13.1 by xtable 1.7-0 package
|
||||
% Thu Apr 5 23:12:29 2012
|
||||
\begin{table}[ht]
|
||||
\begin{center}
|
||||
\begin{tabular}{rrrr}
|
||||
\hline
|
||||
& Est. param. & T-Stat & p-value \\
|
||||
\hline
|
||||
a & 0.02320 & 21.94401 & 0.00000 \\
|
||||
b & -0.58973 & 1.59672 & 0.05859 \\
|
||||
sigma & 0.00011 & 10.98051 & 0.00000 \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\caption{Modèle Vasicek estimé avec GMM}
|
||||
\end{center}
|
||||
\end{table}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Modèle CIR estimé avec GMM}
|
||||
% latex table generated in R 2.13.1 by xtable 1.7-0 package
|
||||
% Thu Apr 5 23:12:29 2012
|
||||
\begin{table}[ht]
|
||||
\begin{center}
|
||||
\begin{tabular}{rrrr}
|
||||
\hline
|
||||
& Est. param. & T-Stat & p-value \\
|
||||
\hline
|
||||
a & 0.02320 & 22.28222 & 0.00000 \\
|
||||
b & -0.58973 & 1.62643 & 0.05535 \\
|
||||
sigma & 0.00227 & 2.39356 & 0.01041 \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\caption{Modèle CIR estimé avec GMM}
|
||||
\end{center}
|
||||
\end{table}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Matrice de Var-Cov des par. pour modèle CKLS avec GMM}
|
||||
% latex table generated in R 2.13.1 by xtable 1.7-0 package
|
||||
% Thu Apr 5 23:12:29 2012
|
||||
\begin{table}[ht]
|
||||
\begin{center}
|
||||
\begin{tabular}{rrrrr}
|
||||
\hline
|
||||
& a & b & sigma & gamma \\
|
||||
\hline
|
||||
a & 0.00010 & -0.00138 & 0.00007 & -0.00001 \\
|
||||
b & -0.00138 & 0.02636 & -0.00267 & 0.00052 \\
|
||||
sigma & 0.00007 & -0.00267 & 0.00402 & -0.00079 \\
|
||||
gamma & -0.00001 & 0.00052 & -0.00079 & 0.00015 \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\caption{Matrice de Var-Cov des par. pour modèle CKLS avec GMM}
|
||||
\end{center}
|
||||
\end{table}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Matrice de Var-Cov des par. pour modèle Vasicek avec GMM}
|
||||
% latex table generated in R 2.13.1 by xtable 1.7-0 package
|
||||
% Thu Apr 5 23:12:29 2012
|
||||
\begin{table}[ht]
|
||||
\begin{center}
|
||||
\begin{tabular}{rrrr}
|
||||
\hline
|
||||
& a & b & sigma \\
|
||||
\hline
|
||||
a & 0.00010 & -0.00138 & 0.00000 \\
|
||||
b & -0.00138 & 0.02636 & -0.00001 \\
|
||||
sigma & 0.00000 & -0.00001 & 0.00000 \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\caption{Matrice de Var-Cov des par. pour modèle Vasicek avec GMM}
|
||||
\end{center}
|
||||
\end{table}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Matrice de Var-Cov des par. pour modèle CIR avec GMM}
|
||||
% latex table generated in R 2.13.1 by xtable 1.7-0 package
|
||||
% Thu Apr 5 23:12:29 2012
|
||||
\begin{table}[ht]
|
||||
\begin{center}
|
||||
\begin{tabular}{rrrr}
|
||||
\hline
|
||||
& a & b & sigma \\
|
||||
\hline
|
||||
a & 0.00010 & -0.00138 & 0.00000 \\
|
||||
b & -0.00138 & 0.02636 & -0.00018 \\
|
||||
sigma & 0.00000 & -0.00018 & 0.00001 \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\caption{Matrice de Var-Cov des par. pour modèle CIR avec GMM}
|
||||
\end{center}
|
||||
\end{table}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Conclusion}
|
||||
\begin{itemize}[<+->]
|
||||
\item Facile à implémenter
|
||||
\item difficultés au niveau du calcul de la matrice de variance-covariance
|
||||
\item Donne des estimations cohérentes pour la moyenne à long terme, mais de grosses différences pour la variance
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\section{Méthode du maximum de vraisemblance}
|
||||
|
||||
\begin{frame}{Objectif}
|
||||
\begin{itemize}[<+->]
|
||||
\item Paramètres qui maximisent la prob. que l'échantillon obtenu provienne de la distribution.
|
||||
\item Fonction à maximiser: logarithme de la fonction de vraisemblance $\ln L(\theta)$
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\subsection{Application aux modèles}
|
||||
|
||||
\begin{frame}{Application au modèle de Vasicek}
|
||||
On obtient de l'EDS:
|
||||
\begin{equation}
|
||||
\label{eq:distVas}
|
||||
r_{t_2} | r_{t_1} \sim N\left(\mu + (r_{t_1} - \mu)e^{-\alpha\Delta t},\frac{\sigma^2}{2\alpha}(1-e^{2\alpha \Delta t})\right)
|
||||
\end{equation}
|
||||
On veut donc minimiser en $\theta$, $f()$ est la densité de $r_{t_2}$:
|
||||
\begin{equation}
|
||||
\label{eq:objVas}
|
||||
-\sum_{i=1}^{n-1} \ln f(\cdot | r_{t_1}, \theta)
|
||||
\end{equation}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Application au modèle CIR}
|
||||
On obtient de l'EDS:
|
||||
\begin{equation}
|
||||
\label{eq:distCIR}
|
||||
p(t_2,r_{t_2}; t_1, r_{t_1}|\theta) = ce^{-u-\nu}(\frac{\nu}{u})^{\frac{q}{2}}I_q(2\sqrt{u\nu})
|
||||
\end{equation}
|
||||
|
||||
$I_q()$ est la fonction de Bessel modifiée de type 1
|
||||
\begin{equation*}
|
||||
I_q (x) = \frac{1}{2 \pi} \int_{-\pi}^\pi e^{-\mathrm{i}\,(q \tau - x \sin \tau)} \,\mathrm{d}\tau.
|
||||
\end{equation*}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Application au modèle CIR}
|
||||
On retrouve les constantes suivantes:
|
||||
\begin{eqnarray*}
|
||||
c &=& \frac{2\alpha}{\sigma^2(1-e^{-\alpha \Delta t})} \\
|
||||
u &=& cr_{t_1}e^{-\alpha \Delta t} \\
|
||||
\nu &=& cr_{t_2} \\
|
||||
q &=& \frac{2\alpha\mu}{\sigma} - 1 \\
|
||||
\end{eqnarray*}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Forme alternative}
|
||||
Au lieu de la forme Bessel modifiée:
|
||||
\begin{equation}
|
||||
\label{eq:chisqCIR}
|
||||
r_{t_2} | r_{t_1} \sim \chi^2(2cr_{t_2};2q+2,2u)
|
||||
\end{equation}
|
||||
Minimiser \eqref{eq:objCIR} en $\theta$, où $f()$ est une $\chi^2$ non centrée de $r_{t_2}$.
|
||||
\begin{equation}
|
||||
\label{eq:objCIR}
|
||||
-\sum_{i=1}^{n-1} \ln f(\cdot | r_{t_1}, \theta)
|
||||
\end{equation}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
La solution est difficile à obtenir numériquement, alors je ne l'ai pas implantée. Cette estimation se fait plus souvent avec des méthodes de filtration (Kalman). \\On peut aussi utiliser la quasi-vraisemblance basée sur la loi normale.
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Application au modèle CIR avec approximation normale}
|
||||
|
||||
\begin{eqnarray*}
|
||||
E[r_{t_2} | r_{t_1}] &=& r_{t_1}e^{-\alpha \Delta t} + \mu \left(1-e^{-\alpha \Delta t}\right) \\
|
||||
V[r_{t_2} | r_{t_1}] &=& r_{t_1}\frac{\sigma^2}{\alpha} \left( e^{-\alpha \Delta t} - e^{-2\alpha \Delta t} \right) + \mu \frac{\sigma^2}{2\alpha} \left(1-e^{-\alpha \Delta t}\right)^2 \\
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{frame}
|
||||
|
||||
\subsection{Estimation}
|
||||
|
||||
\begin{frame}{Estiamtion}
|
||||
Avec les mêmes données que GMM:
|
||||
Paramètres estimés avec les deux méthodes:
|
||||
\input{MLE-param}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Conclusion}
|
||||
Test de ratio de vraisemblance, le modèle CIR ajusté avec l'approximation normale est meilleur que le modèle de Vasicek, avec un niveau de 6.694339e-06.
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\input{cc}
|
||||
\end{frame}
|
||||
|
||||
\end{document}
|
21
presentation-beamer.toc
Normal file
21
presentation-beamer.toc
Normal file
|
@ -0,0 +1,21 @@
|
|||
\beamer@endinputifotherversion {3.10pt}
|
||||
\select@language {french}
|
||||
\beamer@sectionintoc {1}{Introduction}{2}{0}{1}
|
||||
\beamer@sectionintoc {2}{Courbes param\IeC {\'e}triques}{8}{0}{2}
|
||||
\beamer@subsectionintoc {2}{1}{Survol de la m\IeC {\'e}thode et utilisation}{8}{0}{2}
|
||||
\beamer@subsectionintoc {2}{2}{Courbe de Nelson-Siegel}{21}{0}{2}
|
||||
\beamer@subsectionintoc {2}{3}{Analyse empirique}{25}{0}{2}
|
||||
\beamer@subsectionintoc {2}{4}{Conclusion}{41}{0}{2}
|
||||
\beamer@sectionintoc {3}{Analyse de composantes principales}{47}{0}{3}
|
||||
\beamer@subsectionintoc {3}{1}{Survol de la m\IeC {\'e}thode et utilisation}{47}{0}{3}
|
||||
\beamer@subsectionintoc {3}{2}{Analyse empirique}{64}{0}{3}
|
||||
\beamer@subsectionintoc {3}{3}{Conclusion}{76}{0}{3}
|
||||
\beamer@sectionintoc {4}{M\IeC {\'e}thode des moments}{80}{0}{4}
|
||||
\beamer@subsectionintoc {4}{1}{Description de la m\IeC {\'e}thode}{80}{0}{4}
|
||||
\beamer@subsectionintoc {4}{2}{Mod\IeC {\`e}les de taux d'int\IeC {\'e}r\IeC {\^e}t court-terme}{92}{0}{4}
|
||||
\beamer@subsectionintoc {4}{3}{D\IeC {\'e}tails de la m\IeC {\'e}thode}{99}{0}{4}
|
||||
\beamer@subsectionintoc {4}{4}{Donn\IeC {\'e}es utilis\IeC {\'e}es}{116}{0}{4}
|
||||
\beamer@subsectionintoc {4}{5}{Applications}{120}{0}{4}
|
||||
\beamer@sectionintoc {5}{M\IeC {\'e}thode du maximum de vraisemblance}{130}{0}{5}
|
||||
\beamer@subsectionintoc {5}{1}{Application aux mod\IeC {\`e}les}{132}{0}{5}
|
||||
\beamer@subsectionintoc {5}{2}{Estimation}{139}{0}{5}
|
223
rapport-gmm.tex
Executable file
223
rapport-gmm.tex
Executable file
|
@ -0,0 +1,223 @@
|
|||
|
||||
\subsection{Description de la méthode}
|
||||
|
||||
La méthode des moments généralisés est une technique d'estimation paramétrique introduite entre autres par Hansen (1982). Elle consiste à construire des fonctions d'estimation basées sur les moments empiriques qui vérifient une condition d'orthogonalité. Ainsi, le vecteur optimal de paramètres sera celui qui minimisera la valeur de la fonction, ou qui du moins l'approchera le plus de 0 dans l'éventualité de données négatives.\\
|
||||
|
||||
Formellement, on a un vecteur de $k$ paramètres $\theta = (\theta_1, \ldots, \theta_k)'$ auquel on définit $f = (f_1, \ldots, f_m) $, un vecteur de $m, m\geq k$ fonctions $f_i(r_t | \theta)$ de l'échantillon $r_t$, qui sera pour nous une série chronologie de taux court-terme.
|
||||
Ces fonctions sont telles que $E[f_i(r_t | \theta)] = 0\\$.\\
|
||||
|
||||
On obtient le vecteur de paramètres estimés $\hat{\theta}$ en minimisant la fonction objectif $\hat{\theta} = argmin(\theta,f' \times W \times f)$ pour une matrice de pondération définie positive $W$. Pour la méthode des moindres carrés ordinaires, la matrice $W$ est la matrice identité. Elle peut aussi être l'inverse de la matrice de variance-covariance empirique des moments, ou encore l'estimateur robuste de Newey and West (1987), qui tient compte de l'autocorrélation et de l'hétéroscédasticité des données. \\
|
||||
|
||||
Enfin, on pose les tests diagnostiques habituels avec le coefficient d'ajustement est les statistiques de Student pour vérifier la validité de l'estimation.\\
|
||||
|
||||
\subsection{Modèles de taux d'intérêt court-terme}
|
||||
|
||||
Les modèles suivants sont des modèles couramment utilisés en pratique pour modéliser le taux d'intérêt à court terme, souvent à des fins d'évaluations de produits financiers, notamment des obligations et des produits dérivés.
|
||||
|
||||
\paragraph{Modèle de Vasicek}
|
||||
|
||||
Le modèle de Vasicek (1977) est un des modèles les plus simples utilisés en pratique pour modéliser les taux d'intérêt à court terme. Il est basé sur un processus de Ornstein–Uhlenbeck. Une des caractéristique de ce modèle est qu'il présente une forme de retour à la moyenne.
|
||||
|
||||
\begin{equation} \label{eq:vasicek}
|
||||
dr_t = a(b-r_t)\, dt + \sigma \, dW_t
|
||||
\end{equation}
|
||||
|
||||
\eqref{eq:vasicek} présente le modèle sous la forme d'une équation différentielle stochastique, où la moyenne à long terme est $b$, et où $a$ est un paramètre qui fixe la vitesse à laquelle le processus a tendance à retourner à sa moyenne. La volatilité instantanée du processus est représentée par le paramètre $\sigma$ qui multiplie la variation du processus bruit blanc $dW_t$. La variance du processus à long terme est donnée par $\frac{\sigma^2}{2 a}$. On peut retrouver ces valeurs en appliquant le lemme d'Îto, qui nous donne la moyenne et la variance du processus au temps $t$, et en prenant la limite lorsque $t \rightarrow \infty$.
|
||||
|
||||
La solution de l'équiation différentielle stochastique est la variable aléatoire suivante:
|
||||
|
||||
\begin{eqnarray*}
|
||||
r(t) = r(0) e^{-a t} + b \left(1- e^{-a t}\right) + \sigma e^{-a t}\int_0^t e^{a s}\,dW_s.\,\!
|
||||
\end{eqnarray*}
|
||||
|
||||
La moyenne et la variance de $r(t)$ sont dérivées facilement à partir de cette équation:
|
||||
|
||||
\begin{eqnarray*}
|
||||
\mathrm{E}[r_t] &=& r_0 e^{-a t} + b(1 - e^{-at}) \\
|
||||
\mathrm{Var}[r_t] &=& \frac{\sigma^2}{2 a}(1 - e^{-2at}) \\
|
||||
\lim_{t\rightarrow \infty} \mathrm{E}[r_t] &=& b \\
|
||||
\lim_{t\rightarrow \infty} \mathrm{Var}[r_t] &=& \frac{\sigma^2}{2 a} \\
|
||||
\end{eqnarray*}
|
||||
|
||||
|
||||
\paragraph{Modèle de Cox, Ingersoll et Ross}
|
||||
|
||||
Le modèle de Cox, Ingersoll et Ross (1985) (ci-après CIR) est un modèle basé sur le modèle de Vasicek et le concept de retour à la moyenne. Cependant, il n'utilise pas le même processus pour la volatilité, car le modèle de Vasicek peut produire des taux d'intérêt négatif, ce qui n'est pas possible en pratique selon les hypothèses des marchés efficients (Par contre, on a retrouvé à divers moments, des taux d'intérêt négatifs depuis la crise financière de 2008, résultant d'anomalies d'ordre calculatoires, étant donné les taux très bas de cette période.) Le modèle CIR est plutôt basé sur le processus racine carrée.
|
||||
|
||||
\begin{equation}
|
||||
\label{eq:CIR}
|
||||
dr_t = a(b-r_t)\, dt + \sigma\sqrt{r_t}\, dW_t
|
||||
\end{equation}
|
||||
|
||||
\eqref{eq:CIR} représente le modèle CIR sous sa forme d'équation différentielle stochastique. Les paramètres ont la même signification que dans le modèle de Vasicek. La moyenne et la variance de la variable aléatoire qui résous l'équation différentielle stochastique sont respectivement:
|
||||
|
||||
\begin{eqnarray*}
|
||||
E[r_t|r_0] &=& r_0 e^{-\theta t} + \mu (1-e^{-\theta t}) \\
|
||||
Var[r_t|r_0] &=& r_0 \frac{\sigma^2}{\theta} (e^{-\theta t}-e^{-2\theta t}) + \frac{\mu\sigma^2}{2\theta}(1-e^{-\theta t})^2 \\
|
||||
\end{eqnarray*}
|
||||
|
||||
\paragraph{Modèle de Chan, Karolyi, Longstaff et Sanders}
|
||||
|
||||
Le modèle de Chan, Karolyi, Longstaff et Sanders (1992) est une généralisation de plusieurs modèles de taux d'intérêt à court terme. Il constitue ainsi une base pour évaluer les différents modèles et les comparer entre eux.
|
||||
Sa particularité, par rapport au modèle CIR, est que l'exposant de $r_t$ est aussi un paramètre du modèle, $\gamma$, alors qu'il est fixé dans le modèle de CIR $(\gamma = 0.5)$. Pour le modèle de Vasicek, on a $(\gamma = 0)$.
|
||||
\begin{equation}
|
||||
\label{eq:CKLS}
|
||||
dr_t = a(b-r_t)\, dt + \sigma r_t^{\gamma}\, dW_t
|
||||
\end{equation}
|
||||
|
||||
\subsection{Discrétisation}
|
||||
|
||||
Afin de calibrer ces modèles, nous faisons appel à la discrétisation, étant donné que le modèle sera calibré sur des données discrètes. Une des façons les plus simples de discrétiser une équation différentielle stochastique est la méthode d'Euler. Pour le modèle CKLS, on obtient \eqref{eq:discretisationCKLS}
|
||||
|
||||
\begin{equation}
|
||||
\label{eq:discretisationCKLS}
|
||||
r_{t+1} = a + br_t+\sigma r_t^{\gamma}u_{t-1}
|
||||
\end{equation}
|
||||
|
||||
Si on fixe
|
||||
|
||||
\begin{eqnarray*}
|
||||
\epsilon_{t+1} &=& r_{t+1} - (a+br_t) \\
|
||||
&=& \sigma r_t^{\gamma}u_{t-1} \\
|
||||
\end{eqnarray*}
|
||||
|
||||
On ontient alors une variable aléatoire $\epsilon_{t+1}$ qui suit une loi normale centrée de variance $\sigma^2 r_t^{2\gamma}\Delta t$. De plus, $\epsilon_{t+1}$ n'est pas corrélé avec $r_t$. Ces deux conditions vont permettre de construire les fonctions d'estimation pour la méthode des moments. Pour les modèles de Vasicek et CIR, il suffit de remplacer la valeur de $\gamma$ par $0$ ou $0.5$ respectivement.
|
||||
|
||||
\subsection{Conditions de moments utilisés}
|
||||
|
||||
À partir des conditions précédentes, nous pouvons facilement construire au moins quatre équations basées sur les moments de $\epsilon_{t+1}$. Comme les moments d'ordre supérieur peuvent produire un phénomène d'oscillation en présence de données extrêmes, on préfèrera utiliser des moments de premier et second ordre. On a donc les moments en \eqref{eq:moments1} et \eqref{eq:moments2}.
|
||||
|
||||
\begin{eqnarray}
|
||||
\label{eq:moments1}
|
||||
E[\epsilon_{t+1}] &=& 0 \\
|
||||
\label{eq:moments2}
|
||||
E[\epsilon_{t+1}^2 - \sigma^2r_t^{2\gamma}\Delta t] &=& 0
|
||||
\end{eqnarray}
|
||||
|
||||
On peut aussi utiliser le fait que $\epsilon_{t+1}$ n'est pas corrélé avec $r_t$ (\ref{eq:momentscr1} et \ref{eq:momentscr2}).
|
||||
|
||||
\begin{eqnarray}
|
||||
\label{eq:momentscr1}
|
||||
E[\epsilon_{t+1}r_t] &=& 0 \\
|
||||
\label{eq:momentscr2}
|
||||
E[(\epsilon_{t+1}^2 - \sigma^2r_t^{2\gamma}\Delta t)r_t] &=& 0
|
||||
\end{eqnarray}
|
||||
|
||||
Pour une valeur de $\theta$ donnée, on peut calculer les moments empiriques équivalents \eqref{eq:momentsemp1},\eqref{eq:momentsemp2},\eqref{eq:momentsemp3} et \eqref{eq:momentsemp4}.
|
||||
|
||||
\begin{eqnarray}
|
||||
\label{eq:momentsemp1}
|
||||
f_1 &=& \nsumin (r_{t+1} - a - br_t) \\
|
||||
\label{eq:momentsemp2}
|
||||
f_2 &=& \nsumin (r_{t+1} - a - br_t)^2 - \sigma^2r_t^{2\gamma}\Delta t \\
|
||||
\label{eq:momentsemp3}
|
||||
f_3 &=& \nsumin (r_{t+1} - a - br_t)r_t \\
|
||||
\label{eq:momentsemp4}
|
||||
f_4 &=& \nsumin ((r_{t+1} - a - br_t)- \sigma^2r_t^{2\gamma}\Delta t)r_t
|
||||
\end{eqnarray}
|
||||
|
||||
On rassemble ces équations en une somme de moindres carrée (méthode des moindres carrés ordinaires) et on obtient l'équation d'estimation \eqref{eq:objectif1}
|
||||
|
||||
\begin{equation}
|
||||
\label{eq:objectif1}
|
||||
J(a,b,\sigma,\gamma) = f'f = \sum_{i=1}^4 f_i^2
|
||||
\end{equation}
|
||||
|
||||
Cependant, cette équation fait une hypothèse forte d'absence de corrélation et d'homoscédasticité des erreurs, que nous allons éviter en utilisant les moindres carrés pondérés \eqref{eq:objectif2}.
|
||||
|
||||
\begin{equation}
|
||||
\label{eq:objectif2}
|
||||
J(a,b,\sigma,\gamma) = f'W f
|
||||
\end{equation}
|
||||
|
||||
Une matrice optimale pour $W = S^{-1}$ est la matrice qui minimise la covariance. Il est suggéré d'utiliser la matrice d'information de Fisher empirique \eqref{eq:omega0} de l'estimateur f.
|
||||
\begin{equation}
|
||||
\label{eq:omega0}
|
||||
\hat{\Omega_0} = \frac{1}{T} \sum_{t=1}^T \hat{f_t}^2
|
||||
\end{equation}
|
||||
|
||||
Cependant, il existe un meilleur choix qui tient compte à la fois de l'autocovariance et de l'hétéroscédasticité des erreurs, l'estimateur de Newey et West (1987). C'est cet estimateur que nous utiliserons.
|
||||
|
||||
\subsection{Matrice de pondération de Newey-West}
|
||||
|
||||
L'estimateur de Newey-West \cite{Newey_West_1987} prend la forme \eqref{eq:neweywest}
|
||||
|
||||
\begin{eqnarray}
|
||||
\label{eq:neweywest}
|
||||
\hat{S_T} &=& \sum_{j=1}^m (1-\frac{j}{m-1})[\hat{\Omega_j}+\hat{\Omega_j}'] \\
|
||||
\label{eq:neweywestac}
|
||||
\hat{\Omega_j} &=& \frac{1}{T} \sum_{t=j+1}^T \hat{f_t}\hat{f_{t-j}}
|
||||
\end{eqnarray}
|
||||
|
||||
Où $m$ est le nombre de pas de temps de décalage utilisés, et $\hat{\Omega_j}$ est une matrice d'autocovariance entre la série de données et la même série mais décalée de $j$ pas de temps \eqref{eq:neweywestac}. Le rôle du coefficient ($1-\frac{j}{m-1})$ est de s'assurer que la matrice est semi-définie positive. L'estimateur, sans ce facteur de pondération, donne parfois des résultats erronés. C'était l'estimateur proposé dans Hansen (1982) lors de la proposition du modèle GMM.
|
||||
\newpage
|
||||
\begin{landscape}
|
||||
\subsection{Jacobien des moments}
|
||||
|
||||
Nous aurons besoin, pour former les statistiques de diagnostic, du gradient des moments empiriques.
|
||||
Pour le modèle CKLS:
|
||||
|
||||
\begin{eqnarray*}
|
||||
\frac{df}{d\theta} &=&
|
||||
\left[ \begin{array}{cccc}
|
||||
\frac{\partial f_1}{\partial a} & \frac{\partial f_1}{\partial b} & \frac{\partial f_1}{\partial \sigma} & \frac{\partial f_1}{\partial \gamma} \\
|
||||
\frac{\partial f_2}{\partial a} & \frac{\partial f_2}{\partial b} & \frac{\partial f_2}{\partial \sigma} & \frac{\partial f_2}{\partial \gamma} \\
|
||||
\frac{\partial f_3}{\partial a} & \frac{\partial f_3}{\partial b} & \frac{\partial f_3}{\partial \sigma} & \frac{\partial f_3}{\partial \gamma} \\
|
||||
\frac{\partial f_4}{\partial a} & \frac{\partial f_4}{\partial b} & \frac{\partial f_4}{\partial \sigma} & \frac{\partial f_4}{\partial \gamma} \\
|
||||
\end{array} \right] \\
|
||||
\end{eqnarray*}
|
||||
|
||||
\begin{eqnarray*}
|
||||
\frac{df}{d\hat{\theta}} &=& \left[ \begin{array}{cccc}
|
||||
-n& -\sum_{t=1}^{T-1}\left(r_t\right)& 0& 0\\
|
||||
-2\sum_{t=1}^{T-1}\left(r_{t+1} - a - br_t\right)& -2\sum_{t=1}^{T-1}\left(\left(r_{t+1} - a - br_t\right)r_t\right)& -\Delta t \sum_{t=1}^{T-1}\left(r_t^{2\gamma}\right)& -2\sigma^2\Delta t \sum_{t=1}^{T-1}\left(log\left(r_t\right)r_t^{2\gamma}\right)\\
|
||||
-\sum_{t=1}^{T-1}\left(r_t\right)& -\sum_{t=1}^{T-1}\left(r_t^2\right)& 0& 0 \\
|
||||
-2\sum_{t=1}^{T-1}\left(\left(r_{t+1} - a - br_t\right)r_t\right)& -2\sum_{t=1}^{T-1}\left(\left(r_{t+1} - a - br_t\right)r_t^2\right)& -\Delta t \sum_{t=1}^{T-1}\left(r_t^{2\gamma+1}\right)& -2\sigma^2\Delta t \sum_{t=1}^{T-1}\left(log\left(r_t\right)r_t^{2\gamma+1}\right)\\
|
||||
\end{array} \right] \\
|
||||
\end{eqnarray*}
|
||||
\end{landscape}
|
||||
\newpage
|
||||
|
||||
\subsection{Statistique de Student (t)}
|
||||
|
||||
On utilise ici la méthode delta pour construire la matrice de variance-covariance des paramètres à partir de celle des équations (estimateur de Newey-West) \eqref{eq:varparam}
|
||||
|
||||
\begin{equation}
|
||||
\label{eq:varparam}
|
||||
V = \frac{df}{d\hat{\theta}} W \frac{df}{d\hat{\theta}}'
|
||||
\end{equation}
|
||||
|
||||
On prend la diagonale de cette matrice, qui contient les variances des estimateurs, pour calculer les statistiques de Student
|
||||
|
||||
\begin{eqnarray*}
|
||||
t &=& \frac{\theta_i}{\sqrt{V_{ii}}}
|
||||
\end{eqnarray*}
|
||||
|
||||
\newpage
|
||||
\subsection{Données utilisées}
|
||||
|
||||
Les données utilisées sont des données mensuelles entre les dates suivantes
|
||||
|
||||
\verbatiminput{GMM-dates.txt}
|
||||
|
||||
La série se décrit visuellement comme suit:
|
||||
|
||||
\includegraphics[scale=0.75]{serieGMM.pdf}
|
||||
|
||||
Les statistiques descriptives de base de la série sont:
|
||||
|
||||
\verbatiminput{summaryDonneesGMM.txt}
|
||||
|
||||
Ces statistiques peuvent servir de point de comparaison pour évaleur la pertinence des résultats d'un modèle étant donné que l'on travaille avec des méthodes numériques.
|
||||
|
||||
\subsection{Applications}
|
||||
|
||||
Les résultats des estimations, les statistiques de test ainsi que les matrices de variance-covariance des paramètres, pour chacun des modèles de taux d'intérêt. \\
|
||||
|
||||
\input{MMGestimation.tex}
|
||||
|
||||
On remarque que les modèles semblent cohérents les uns envers les autres, notamment par rapport à la moyenne à long terme ainsi qu'à la vitesse de retour à l'équilibre. \\
|
||||
|
||||
\subsection{Conclusion}
|
||||
|
||||
L'application de la méthode est facile à implémenter mais il semble avoir des difficultés au niveau du calcul de la matrice de variance-covariance qui explose pour le modèle CKLS. Cette méthode donne tout du moins des estimateur semblables, sauf en ce qui concerne la volatilité. On peut donc dire que cette analyse est cohérente avec l'intuition que l'on peut avoir des modèles de taux d'intérêt à court terme.
|
85
rapport-mle.tex
Executable file
85
rapport-mle.tex
Executable file
|
@ -0,0 +1,85 @@
|
|||
|
||||
\subsection{Description de la méthode}
|
||||
|
||||
La méthode du maximum de vraisemblance cherche les paramètres qui maximisent la probabilité que l'échantillon obtenu provienne de la distribution en question. La fonction de vraisemblance $L(\theta)$ est la densité conjointe de tous les éléments de l'échantillon. On utilise souvent le logarithme de la fonction de vraisemblance $\ln L(\theta)$ comme fonction à maximiser car elle est plus simple a évaluer et à différencier.
|
||||
Pour une description de la méthode en profondeur et les propriétés statistiques des estimateurs on peut consulter toute monographie de statistique mathématique.
|
||||
|
||||
\subsection{Application au modèle de Vasicek}
|
||||
|
||||
La résolution de l'équation différentielle stochastique qui caractérise le modèle de Vasicek permet d'identifier la distribution \eqref{eq:distVas} du taux à un temps $t_2, t_2 > t_1$ sachant la valeur du taux au temps $t_1$.
|
||||
|
||||
\begin{equation}
|
||||
\label{eq:distVas}
|
||||
r_{t_2} | r_{t_1} \sim N\left(\mu + (r_{t_1} - \mu)e^{-\alpha\Delta t},\frac{\sigma^2}{2\alpha}(1-e^{2\alpha \Delta t})\right)
|
||||
\end{equation}
|
||||
|
||||
$N(\mu,\sigma^2)$ est distribution normale de moyenne $\mu$ et de variance $\sigma^2$.
|
||||
On voir donc minimiser \eqref{eq:objVas} en $\theta$, où $f()$ est la densité de la loi normale de $r_{t_2}$.
|
||||
|
||||
\begin{equation}
|
||||
\label{eq:objVas}
|
||||
-\sum_{i=1}^{n-1} \ln f(\cdot | r_{t_1}, \theta)
|
||||
\end{equation}
|
||||
|
||||
La solution est obtenue directement en utilisant un algorithme d'optimisation numérique.
|
||||
|
||||
\subsection{Application au modèle CIR}
|
||||
|
||||
La résolution de l'équation différentielle stochastique qui caractérise le modèle CIR permet d'identifier la distribution \eqref{eq:distCIR} du taux à un temps $t_2, t_2 > t_1$ sachant la valeur du taux au temps $t_1$.
|
||||
|
||||
\begin{equation}
|
||||
\label{eq:distCIR}
|
||||
p(t_2,r_{t_2}; t_1, r_{t_1}|\theta) = ce^{-u-\nu}(\frac{\nu}{u})^{\frac{q}{2}}I_q(2\sqrt{u\nu})
|
||||
\end{equation}
|
||||
|
||||
$I_q()$ est la fonction de Bessel modifiée de type 1
|
||||
|
||||
\begin{equation*}
|
||||
I_q (x) = \frac{1}{2 \pi} \int_{-\pi}^\pi e^{-\mathrm{i}\,(q \tau - x \sin \tau)} \,\mathrm{d}\tau.
|
||||
\end{equation*}
|
||||
|
||||
Et on retrouve les constantes suivantes:
|
||||
|
||||
\begin{eqnarray*}
|
||||
c &=& \frac{2\alpha}{\sigma^2(1-e^{-\alpha \Delta t})} \\
|
||||
u &=& cr_{t_1}e^{-\alpha \Delta t} \\
|
||||
\nu &=& cr_{t_2} \\
|
||||
q &=& \frac{2\alpha\mu}{\sigma} - 1 \\
|
||||
\end{eqnarray*}
|
||||
|
||||
Cette fonction de distribution peut aussi être vue comme une $\chi^2$ non centrée \eqref{eq:chisqCIR}. Cette approche est plus facile à programmer étant donné qu'elle ne requiert pas d'approximation de la fonction de Bessel modifiée de type 1.
|
||||
|
||||
\begin{equation}
|
||||
\label{eq:chisqCIR}
|
||||
r_{t_2} | r_{t_1} \sim \chi^2(2cr_{t_2};2q+2,2u)
|
||||
\end{equation}
|
||||
|
||||
On doit donc minimiser \eqref{eq:objCIR} en $\theta$, où $f()$ est la densité de la loi $\chi^2$ non centrée de $r_{t_2}$.
|
||||
|
||||
\begin{equation}
|
||||
\label{eq:objCIR}
|
||||
-\sum_{i=1}^{n-1} \ln f(\cdot | r_{t_1}, \theta)
|
||||
\end{equation}
|
||||
|
||||
La solution peut être obtenue directement en utilisant un algorithme d'optimisation numérique. Cet algorithme n'a pas été implanté car il est numériquement très instable et cet estimation se fait habituellement avec d'autres méthodes dont le filtre de Kalman.
|
||||
|
||||
\subsection{Application au modèle CIR avec approximation normale}
|
||||
|
||||
L'approche par approximation normale pose comme hypothèse que la distribution de $r_{t_2} | r_{t_1}$ est normale, suivant la moyenne et la variance de la distribution de $\chi^2$ non centrée.
|
||||
|
||||
\begin{eqnarray*}
|
||||
E[r_{t_2} | r_{t_1}] &=& r_{t_1}e^{-\alpha \Delta t} + \mu \left(1-e^{-\alpha \Delta t}\right) \\
|
||||
V[r_{t_2} | r_{t_1}] &=& r_{t_1}\frac{\sigma^2}{\alpha} \left( e^{-\alpha \Delta t} - e^{-2\alpha \Delta t} \right) + \mu \frac{\sigma^2}{2\alpha} \left(1-e^{-\alpha \Delta t}\right)^2 \\
|
||||
\end{eqnarray*}
|
||||
|
||||
\subsection{Analyse empirique}
|
||||
|
||||
Les données considérées sont les données de série chronologique mensuelles du taux composite des bons du trésor américains d'échéance 3 mois, entre les dates suivantes: \input{MLE-dates} \\
|
||||
|
||||
Les paramètres estimés avec les deux méthodes sont resumés dans la table \ref{tab:estimParam}:
|
||||
|
||||
\input{MLE-param}
|
||||
|
||||
\subsection{Conclusion}
|
||||
|
||||
En effectuant un test de ratio de vraisemblance, pour $H_0$: le modèle X est meilleur que le modèle Y, on constate que le modèle CIR ajusté avec l'approximation normale est meilleur que le modèle de Vasicek, avec une p-value de 6.694339e-06. On remarquera par contre dans la littérature que le modèle CIR, lorsque l'on surmonte les problèmes numériques, est meilleur que ces deux modèles.
|
80
rapport-nelsonsiegel.tex
Executable file
80
rapport-nelsonsiegel.tex
Executable file
|
@ -0,0 +1,80 @@
|
|||
\subsection{Survol de la méthode et utilisation}
|
||||
|
||||
La méthode de modélisation de la structure à terme basée sur des courbes paramétriques vise à fournir une approximation des taux d'intérêt à partir de points connus et observables de cette courbe, que l'on peut retrouver notamment via des services d'informations financières tels Bloomberg et CRSP. Ces courbes ne font aucunement allusion à une distribution statistique particulière et fonctionnent avec des données en coupe transversale. Pour chaque temps $t$, on peut calculer l'équation de la courbe, et ce indépendamment des informations passées, qui n'interviennent pas dans ces modèles. Ces modèles n'ont aucune valeur prédictive et servent strictement à faire de l'interpolation afin de peaufiner l'ajustement de modèles de taux d'intérêt tels que les modèles de la famille HJM et les modèles basés sur le modèle de Vasicek, ainsi que tout autre modèle basé sur un taux initial connu et fixé. On retrouve dans cette famille les modèles basés sur des splines cubiques et splines de lissage, ainsi que la famille de modèles basés sur les travaux de Nelson et Siegel. \\
|
||||
|
||||
Une propriété commune à ces modèles est qu'ils sont constitués d'une fonction de base $\phi_k(\tau)$ et de paramètres $\lambda_k$, composants les différents termes d'une somme, comprenant $K$ termes, plus ou moins selon l'ajustement désiré. La forme générale est la suivante:
|
||||
|
||||
\begin{eqnarray*}
|
||||
\delta(\tau) &=& \sum_{k=1}^K \lambda_k \phi_k(\tau)
|
||||
\end{eqnarray*}
|
||||
|
||||
L'estimation de splines est basée sur la correspondance des premières dérivées et donne des résultats précis dont on peut borner exactement l'erreur maximale, car ce sont de simples fonctions polynomiales. Cependant, ces courbes ont un comportement qui ne répond pas aux exigences d'une courbe de structure à terme car elles ne sont pas robustes, en plus de comporter de nombreux paramètres (4 par intervalle). \\
|
||||
|
||||
Quant à elles. les courbes de la famille de Nelson-Siegel ont l'avantage d'être parcimonieuses, le modèle de base comportant quatre paramètres. Elles sont construite à partir de monômes, de polynômes multipliés par une forme exponentielle. Elles sont considérées adéquates dans la plupart des situation où la courbe n'est pas complexe. Comme ces courbes ne passent pas par tous les points connus, il faut par contre les estimer par une méthode du type moindres carrés. \\
|
||||
|
||||
Dans la section suivante, on ne traitera que de la courbe de Nelson-Siegel dans sa forme originale. Par contre, il en existe plusieurs généralisations dont les courbes de Svensson, Wiseman et Bjork and Christensen.\\
|
||||
|
||||
\subsection{Courbe de Nelson-Siegel}
|
||||
|
||||
La courbe de Nelson-Siegel prend la forme suivante, pour les taux à terme:
|
||||
|
||||
\begin{eqnarray*}
|
||||
f_0(\tau,t) = \beta_{0t}+(\beta_{1t}+\beta_{2t}\tau)e^{-\beta_{3t}\tau} \\
|
||||
\end{eqnarray*}
|
||||
|
||||
Et de même pour les taux instantanés
|
||||
|
||||
\begin{eqnarray*}
|
||||
r(\tau,t) = \beta_{0t}+(\beta_{1t}+\beta_{2t}\tau)e^{-\beta_{3t}\tau} \\
|
||||
\end{eqnarray*}
|
||||
|
||||
Elle peut à la fois être utilisée pour modélisée la structure à terme des taux instantanés (spot rate) ou encore celle des taux à terme (forward rate). Si on utilise la forme précédente pour modéliser le taux à terme, on retrouve alors la forme suivante pour les taux instantanés, qui représentent une moyenne de taux à terme.
|
||||
|
||||
\begin{eqnarray*}
|
||||
r(\tau,t) &=& \frac{1}{\tau} \int_0^\tau f_0(s) ds \\
|
||||
&=& \beta_0 + (\beta_{1t}+\frac{\beta_{2t}}{\beta_{3t}})\frac{1-e^{-\beta_{3t}{\tau}}}{\beta_{3t}\tau}-\frac{\beta_{2t}}{\beta_{3t}}e^{-\beta_{3t}\tau} \\
|
||||
\end{eqnarray*}
|
||||
|
||||
On remarque une certaine ressemblance entre la forme de cette équation et la structure donnée par le modèle de Vasicek, mais en pratique elle se limite à la présence de la forme exponentielle, et formellement les deux modèles ont peu de caractéristiques en commun.
|
||||
|
||||
\subsection{Analyse empirique}
|
||||
|
||||
On utilise pour cette étude empirique les taux composite des bons du trésor américain entre le 3 janvier 1990 et le 15 février 2012, pris à un intervalle de 30 jours ouvrables, c'est-à-dire 192 observations. Les taux considérés ici sont pour les obligations de 90 jours, 2 ans, 3 ans, 5 ans et 10 ans. Seules ces séries ont été utilisées car elles sont complètes pour toutes les journées d'ouverture des marchés.
|
||||
|
||||
L'estimation a été effectuée à l'aide de la méthode des moindres carrés ordinaires, c'est-à-dire sans utiliser de pondération par la matrice de variance-covariance.
|
||||
|
||||
Si on note $O_\tau^{(t)}$ le taux instantané observé pour la duration $\tau$ au temps $t$, on obtient l'équation d'estimation suivante au temps $t$:
|
||||
|
||||
\begin{eqnarray*}
|
||||
\sum_{\tau} (O_\tau^{(t)} - r(\tau,t))^2
|
||||
\end{eqnarray*}
|
||||
|
||||
On doit minimiser la valeur de cette expression pour obtenir les meilleurs estimateurs de
|
||||
$\mathbf{\beta} = [\beta_0,\beta_1,\beta_2,\beta_3]$.
|
||||
On effectue l'optimisation de la fonction d'estimation pour chaque temps $t$ pour lequel on désire estimer la courbe. On peut ensuite utiliser les paramètres estimés pour tracer un graphique d'une courbe en particulier et effectuer une comparaison visuelle de la performance du modèle.
|
||||
|
||||
\includegraphics[scale=0.5,page=2]{nelsonsiegel-plots.pdf}
|
||||
|
||||
On remarque au temps 1 que la courbe est relativement plate, elle s'ajuste très bien aux données dans cette situation.
|
||||
|
||||
\includegraphics[scale=0.5,page=3]{nelsonsiegel-plots.pdf}
|
||||
|
||||
Au temps 61, la courbe est concave, et on remarque un bon ajustement par rapport aux données observées.
|
||||
|
||||
\includegraphics[scale=0.5,page=4]{nelsonsiegel-plots.pdf}
|
||||
|
||||
Au temps 121, la courbe est aussi concave, et on remarque encore un bon ajustement par rapport aux données observées.
|
||||
|
||||
\includegraphics[scale=0.5,page=5]{nelsonsiegel-plots.pdf}
|
||||
|
||||
Au temps 181, la courbe devrait plutôt avoir une forme convexe, on observe qu'ici, en présence de taux très faibles pour une duration de 90 jours, que l'ajustement n'est pas du tout satisfaisant. C'est d'ailleurs une des limites de la courbe de Nelson-Siegel de ne pas bien s'adapter à des structures à terme convexes ou irrégulières, ayant des points d'inflexion par exemple.
|
||||
|
||||
En résumé, voici les courbes pour les 192 observations, de gauche à droite
|
||||
|
||||
\includegraphics[scale=0.75,page=1]{nelsonsiegel-plots.pdf}
|
||||
|
||||
\newpage
|
||||
|
||||
\subsection{Conclusion}
|
||||
|
||||
Les courbes paramétriques sont utiles pour faire de l'interpolation et donner une approximation de la structure à terme. Cependant, dans le cas des splines et des courbes de Nelson-Siegel, ce ne sont pas des modèles robustes et ils peuvent facilement mener à des résultats erronées si les données n'ont pas certaines caractéristiques de régularité. Cependant, les courbes de Nelson-Siegel sont faciles à estimer et selon les résultats observés, fonctionnent bien la majorité du temps.
|
101
rapport-principalcomponent.tex
Executable file
101
rapport-principalcomponent.tex
Executable file
|
@ -0,0 +1,101 @@
|
|||
\subsection{Survol de la méthode et utilisation}
|
||||
|
||||
La méthode d'analyse de composantes principales est une méthode générale qui vise à identifier différents facteurs qui peuvent causer la volatilité à l'intérieur d'une série chronologique multivariée de taux d'intérêt pour des durations données. Ces composantes peuvent ensuite être représentées dans un modèle à facteurs multiples de la classe affine par exemple. Cependant, cette analyse est particulièrement complexe puisqu'elle implique de modéliser des processus stochastiques sur des espaces non euclidiens. Pour ce rapport, seule la méthode d'identification des composantes sera expliquée, et quelques conclusions pourront en être tirées.\\
|
||||
|
||||
\paragraph{Différenciation}
|
||||
|
||||
On considère les observations sous la forme $r_{t_i}(\tau_j)$ où $t_i$ est le temps, de $1$ à $n+1$, et $j$ est le nombre d'observations en coupe transversale (nombre de séries de taux d'intérêt).
|
||||
|
||||
Comme on cherche à modéliser la volatilité, on doit alors travailler sur des données différenciées. Nous devons devons d'abord calculer les différences $d_{i,j}$, que nous considérerons comme des observations de la variable aléatoire $d_j$, c'est-à-dire la variable représentant l'intensité des sauts à l'intérieur d'une série.
|
||||
|
||||
\begin{eqnarray*}
|
||||
d_{i,j} = r_{t_{i+1}}(\tau_j) - r_{t_{i}}(\tau_j)
|
||||
\end{eqnarray*}
|
||||
|
||||
\paragraph{Matrice de variance-covariance}
|
||||
|
||||
On calcule ensuite la matrice de variance-covariance de ces observations $\Sigma$, qui prend la forme:
|
||||
\begin{eqnarray*}
|
||||
\Sigma &=& \left[
|
||||
\begin{array}{cccc}
|
||||
var(d_1) & cov(d_1,d_2) & \cdots & cov(d_1,d_k) \\
|
||||
cov(d_2,d_1)& var(d_2) & \ddots & \vdots \\
|
||||
\vdots & & \ddots & \vdots \\
|
||||
cov(d_k,d_1) & \cdots & \cdots & var(d_k) \\
|
||||
\end{array}\right]
|
||||
\end{eqnarray*}
|
||||
|
||||
On peut aussi calculer la matrice de corrélation correspondante et poursuivre l'analyse avec cette matrice.
|
||||
|
||||
\paragraph{Valeurs et vecteurs propres}
|
||||
|
||||
On doit maintenant trouver une matrice $\mathbf{P}$ telle que sa transposée est également son inverse.
|
||||
|
||||
Cette matrice $\mathbf{P}$ est la matrice de vecteurs propres de $\Sigma$. On a aussi un vecteur $\mathbf{\lambda}$
|
||||
contenant les valeurs propres de chacun des vecteurs propres (colonnes) de $\mathbf{P}$.
|
||||
|
||||
La matrice $\mathbf{P}$ est la matrice de composantes principales et le vecteur $\mathbf{\lambda}$ est le vecteur des variances de chacune des composantes principales, en ordre décroissant. Il est important de noter que les composantes principales sont orthogonales entre elles et donc que la covariance entre chacune d'elles est nulle.
|
||||
|
||||
Une fois les composantes principales obtenues, il s'agit ensuite de les visualiser graphiquement pour les interpréter. La littérature affirme que les taux d'intérêts peuvent être expliqués à l'aide des trois premières composantes principales (trois premières colonnes de la matrice $\mathbf{P}$.
|
||||
|
||||
\subsection{Analyse empirique}
|
||||
|
||||
On utilise pour cette étude empirique les taux composite des bons du trésor américain entre le 3 janvier 1990 et le 15 février 2012, pris à un intervalle quotidien. Les taux considérés ici sont pour les obligations de 90 jours, 2 ans, 3 ans, 5 ans, 10 ans et 30 ans.
|
||||
|
||||
Voici les séries utilisées
|
||||
|
||||
\includegraphics[scale=0.75]{PCA-tseries.pdf}
|
||||
|
||||
\newpage
|
||||
\subsubsection{Approche avec covariances}
|
||||
|
||||
En utilisant l'approche par covariance, nous obtenons la matrice $\mathbf{P}$ de composantes principales suivante:
|
||||
|
||||
\input{PCA-Pcov}
|
||||
|
||||
et le vecteur de valeurs propres $\mathbf{\lambda}$ suivant:
|
||||
|
||||
\input{PCA-lambdacov}
|
||||
|
||||
Nous pouvons en déduire que chacune des composantes explique cette proportion de la variance totale:
|
||||
|
||||
\input{PCA-prcov}
|
||||
|
||||
\newpage
|
||||
|
||||
\subsubsection{Approche avec corrélation}
|
||||
|
||||
En utilisant l'approche par corrélation, nous obtenons la matrice $\mathbf{P}$ de composantes principales suivante:
|
||||
|
||||
\input{PCA-Pcorr}
|
||||
|
||||
et le vecteur de valeurs propres $\mathbf{\lambda}$ suivant:
|
||||
|
||||
\input{PCA-lambdacorr}
|
||||
|
||||
Nous pouvons en déduire que chacune des composantes explique cette proportion de la corrélation totale:
|
||||
|
||||
\input{PCA-prcorr}
|
||||
|
||||
|
||||
\subsubsection{Comparaison des deux approches}
|
||||
|
||||
\includegraphics[scale=0.75]{PCA-composantes1-2-3.pdf}
|
||||
|
||||
On observe sur ce graphique les trois composantes principales pour la méthode avec la covariance et la méthode avec la corrélation. On remarque que les deux méthodes donnent des résultat similaires mais non identiques.
|
||||
|
||||
\subsubsection{Volatilité expliquée par composante (score)}
|
||||
|
||||
En utilisant des séries chronologiques centrées sur leur moyenne, on peut construire une fonction appelée score qui exprime, pour chaque composante, la proportion de volatilité expliquée, sous forme de série chronologique.
|
||||
|
||||
\begin{eqnarray*}
|
||||
Score(t) &=& r(t) \times \mathbf{P}
|
||||
\end{eqnarray*}
|
||||
|
||||
Pour les deux méthodes utilisées, on obtient les graphiques suivants:
|
||||
|
||||
\includegraphics[scale=0.75]{PCA-score.pdf}
|
||||
|
||||
\subsection{Conclusion}
|
||||
|
||||
Sur les graphiques précédents, on remarque bien que se détachent principalement trois composantes qui expliquent la grande majorité de la variance, est ce tout au long de la série temporelle. Dans la littérature financière, ces composantes sont souvent appelés, dans l'ordre d'importance, Parralel Shift, Tilt et Flex (Curvature). La première est relativement plate et représente les changements qui affectent l'ensemble de la courbe. La seconde explique les variations à court terme, et leur influence inverse sur les variations à long terme, et enfin, la dernière exprime la tendance qu'a la structure à terme à prendre une forme plus ou moins concave.
|
39
rapport-titlepage.tex
Executable file
39
rapport-titlepage.tex
Executable file
|
@ -0,0 +1,39 @@
|
|||
\begin{titlepage}
|
||||
|
||||
\begin{center}
|
||||
|
||||
|
||||
% Upper part of the page
|
||||
|
||||
\textsc{\LARGE Université Laval}\\[1.5cm]
|
||||
|
||||
\textsc{\Large ACT-7006: Sujets Spéciaux I}\\[1.5cm]
|
||||
|
||||
|
||||
% Title
|
||||
|
||||
|
||||
{\huge Rapport}\\[4cm]
|
||||
|
||||
|
||||
\begin{minipage}{0.4\textwidth}
|
||||
\begin{flushleft} \large
|
||||
\emph{Par:}\\
|
||||
François \textsc{Pelletier}
|
||||
\end{flushleft}
|
||||
\end{minipage}
|
||||
\begin{minipage}{0.4\textwidth}
|
||||
\begin{flushright} \large
|
||||
\emph{Remis à} \\
|
||||
M. Andrew Luong
|
||||
\end{flushright}
|
||||
\end{minipage}
|
||||
|
||||
\vfill
|
||||
|
||||
{\large \today}
|
||||
|
||||
\end{center}
|
||||
|
||||
\end{titlepage}
|
||||
|
109
rapport.aux
Normal file
109
rapport.aux
Normal file
|
@ -0,0 +1,109 @@
|
|||
\relax
|
||||
\catcode`:\active
|
||||
\catcode`;\active
|
||||
\catcode`!\active
|
||||
\catcode`?\active
|
||||
\providecommand\HyperFirstAtBeginDocument{\AtBeginDocument}
|
||||
\HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined
|
||||
\global\let\oldcontentsline\contentsline
|
||||
\gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}}
|
||||
\global\let\oldnewlabel\newlabel
|
||||
\gdef\newlabel#1#2{\newlabelxx{#1}#2}
|
||||
\gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}}
|
||||
\AtEndDocument{\ifx\hyper@anchor\@undefined
|
||||
\let\contentsline\oldcontentsline
|
||||
\let\newlabel\oldnewlabel
|
||||
\fi}
|
||||
\fi}
|
||||
\global\let\hyper@last\relax
|
||||
\gdef\HyperFirstAtBeginDocument#1{#1}
|
||||
\providecommand\HyField@AuxAddToFields[1]{}
|
||||
\select@language{french}
|
||||
\@writefile{toc}{\select@language{french}}
|
||||
\@writefile{lof}{\select@language{french}}
|
||||
\@writefile{lot}{\select@language{french}}
|
||||
\citation{james2000interest}
|
||||
\citation{lai2008statistical}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {1}Introduction}{3}{section.1}}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {2}Courbes param\IeC {\'e}triques}{4}{section.2}}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {2.1}Survol de la m\IeC {\'e}thode et utilisation}{4}{subsection.2.1}}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2}Courbe de Nelson-Siegel}{4}{subsection.2.2}}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3}Analyse empirique}{5}{subsection.2.3}}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4}Conclusion}{9}{subsection.2.4}}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {3}Analyse de composantes principales}{10}{section.3}}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Survol de la m\IeC {\'e}thode et utilisation}{10}{subsection.3.1}}
|
||||
\@writefile{toc}{\contentsline {paragraph}{Diff\IeC {\'e}renciation}{10}{section*.2}}
|
||||
\@writefile{toc}{\contentsline {paragraph}{Matrice de variance-covariance}{10}{section*.3}}
|
||||
\@writefile{toc}{\contentsline {paragraph}{Valeurs et vecteurs propres}{10}{section*.4}}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Analyse empirique}{11}{subsection.3.2}}
|
||||
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.1}Approche avec covariances}{12}{subsubsection.3.2.1}}
|
||||
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2}Approche avec corr\IeC {\'e}lation}{13}{subsubsection.3.2.2}}
|
||||
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.3}Comparaison des deux approches}{14}{subsubsection.3.2.3}}
|
||||
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.4}Volatilit\IeC {\'e} expliqu\IeC {\'e}e par composante (score)}{14}{subsubsection.3.2.4}}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3}Conclusion}{15}{subsection.3.3}}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {4}M\IeC {\'e}thode des moments}{16}{section.4}}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Description de la m\IeC {\'e}thode}{16}{subsection.4.1}}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {4.2}Mod\IeC {\`e}les de taux d'int\IeC {\'e}r\IeC {\^e}t court-terme}{16}{subsection.4.2}}
|
||||
\@writefile{toc}{\contentsline {paragraph}{Mod\IeC {\`e}le de Vasicek}{16}{section*.5}}
|
||||
\newlabel{eq:vasicek}{{1}{16}{Modèle de Vasicek\relax }{equation.4.1}{}}
|
||||
\@writefile{toc}{\contentsline {paragraph}{Mod\IeC {\`e}le de Cox, Ingersoll et Ross}{17}{section*.6}}
|
||||
\newlabel{eq:CIR}{{2}{17}{Modèle de Cox, Ingersoll et Ross\relax }{equation.4.2}{}}
|
||||
\@writefile{toc}{\contentsline {paragraph}{Mod\IeC {\`e}le de Chan, Karolyi, Longstaff et Sanders}{17}{section*.7}}
|
||||
\newlabel{eq:CKLS}{{3}{17}{Modèle de Chan, Karolyi, Longstaff et Sanders\relax }{equation.4.3}{}}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3}Discr\IeC {\'e}tisation}{18}{subsection.4.3}}
|
||||
\newlabel{eq:discretisationCKLS}{{4}{18}{Discrétisation\relax }{equation.4.4}{}}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4}Conditions de moments utilis\IeC {\'e}s}{18}{subsection.4.4}}
|
||||
\newlabel{eq:moments1}{{5}{18}{Conditions de moments utilisés\relax }{equation.4.5}{}}
|
||||
\newlabel{eq:moments2}{{6}{18}{Conditions de moments utilisés\relax }{equation.4.5}{}}
|
||||
\newlabel{eq:momentscr1}{{7}{18}{Conditions de moments utilisés\relax }{equation.4.7}{}}
|
||||
\newlabel{eq:momentscr2}{{8}{18}{Conditions de moments utilisés\relax }{equation.4.7}{}}
|
||||
\citation{Newey_West_1987}
|
||||
\newlabel{eq:momentsemp1}{{9}{19}{Conditions de moments utilisés\relax }{equation.4.9}{}}
|
||||
\newlabel{eq:momentsemp2}{{10}{19}{Conditions de moments utilisés\relax }{equation.4.9}{}}
|
||||
\newlabel{eq:momentsemp3}{{11}{19}{Conditions de moments utilisés\relax }{equation.4.9}{}}
|
||||
\newlabel{eq:momentsemp4}{{12}{19}{Conditions de moments utilisés\relax }{equation.4.9}{}}
|
||||
\newlabel{eq:objectif1}{{13}{19}{Conditions de moments utilisés\relax }{equation.4.13}{}}
|
||||
\newlabel{eq:objectif2}{{14}{19}{Conditions de moments utilisés\relax }{equation.4.14}{}}
|
||||
\newlabel{eq:omega0}{{15}{19}{Conditions de moments utilisés\relax }{equation.4.15}{}}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {4.5}Matrice de pond\IeC {\'e}ration de Newey-West}{19}{subsection.4.5}}
|
||||
\newlabel{eq:neweywest}{{16}{19}{Matrice de pondération de Newey-West\relax }{equation.4.16}{}}
|
||||
\newlabel{eq:neweywestac}{{17}{19}{Matrice de pondération de Newey-West\relax }{equation.4.16}{}}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {4.6}Jacobien des moments}{21}{subsection.4.6}}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {4.7}Statistique de Student (t)}{22}{subsection.4.7}}
|
||||
\newlabel{eq:varparam}{{18}{22}{Statistique de Student (t)\relax }{equation.4.18}{}}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {4.8}Donn\IeC {\'e}es utilis\IeC {\'e}es}{23}{subsection.4.8}}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {4.9}Applications}{24}{subsection.4.9}}
|
||||
\@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces Mod\IeC {\`e}le CKLS estim\IeC {\'e} avec GMM}}{24}{table.1}}
|
||||
\@writefile{lot}{\contentsline {table}{\numberline {2}{\ignorespaces Mod\IeC {\`e}le Vasicek estim\IeC {\'e} avec GMM}}{24}{table.2}}
|
||||
\@writefile{lot}{\contentsline {table}{\numberline {3}{\ignorespaces Mod\IeC {\`e}le CIR estim\IeC {\'e} avec GMM}}{24}{table.3}}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {4.10}Conclusion}{24}{subsection.4.10}}
|
||||
\@writefile{lot}{\contentsline {table}{\numberline {4}{\ignorespaces Matrice de Var-Cov des par. pour mod\IeC {\`e}le CKLS avec GMM}}{25}{table.4}}
|
||||
\@writefile{lot}{\contentsline {table}{\numberline {5}{\ignorespaces Matrice de Var-Cov des par. pour mod\IeC {\`e}le Vasicek avec GMM}}{25}{table.5}}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {5}M\IeC {\'e}thode du maximum de vraisemblance}{25}{section.5}}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {5.1}Description de la m\IeC {\'e}thode}{25}{subsection.5.1}}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {5.2}Application au mod\IeC {\`e}le de Vasicek}{25}{subsection.5.2}}
|
||||
\newlabel{eq:distVas}{{19}{25}{Application au modèle de Vasicek\relax }{equation.5.19}{}}
|
||||
\newlabel{eq:objVas}{{20}{25}{Application au modèle de Vasicek\relax }{equation.5.20}{}}
|
||||
\@writefile{lot}{\contentsline {table}{\numberline {6}{\ignorespaces Matrice de Var-Cov des par. pour mod\IeC {\`e}le CIR avec GMM}}{26}{table.6}}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {5.3}Application au mod\IeC {\`e}le CIR}{26}{subsection.5.3}}
|
||||
\newlabel{eq:distCIR}{{21}{26}{Application au modèle CIR\relax }{equation.5.21}{}}
|
||||
\newlabel{eq:chisqCIR}{{22}{26}{Application au modèle CIR\relax }{equation.5.22}{}}
|
||||
\newlabel{eq:objCIR}{{23}{26}{Application au modèle CIR\relax }{equation.5.23}{}}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {5.4}Application au mod\IeC {\`e}le CIR avec approximation normale}{27}{subsection.5.4}}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {5.5}Analyse empirique}{27}{subsection.5.5}}
|
||||
\@writefile{lot}{\contentsline {table}{\numberline {7}{\ignorespaces Param\IeC {\`e}tres estim\IeC {\'e}s par maximum de vraiemblance pour 2 mod\IeC {\`e}les}}{27}{table.7}}
|
||||
\newlabel{tab:estimParam}{{7}{27}{Paramètres estimés par maximum de vraiemblance pour 2 modèles\relax }{table.7}{}}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {5.6}Conclusion}{27}{subsection.5.6}}
|
||||
\bibdata{biblio}
|
||||
\bibcite{james2000interest}{1}
|
||||
\bibcite{lai2008statistical}{2}
|
||||
\bibcite{Newey_West_1987}{3}
|
||||
\bibstyle{plain}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {6}Bibliographie}{28}{section.6}}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {7}Annexes}{29}{section.7}}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {7.1}Fichier source R pour courbes de Nelson Siegel}{29}{subsection.7.1}}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {7.2}Fichier source R pour PCA}{30}{subsection.7.2}}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {7.3}Fichiers source R pour MMG}{33}{subsection.7.3}}
|
||||
\@writefile{toc}{\contentsline {subsubsection}{\numberline {7.3.1}Fonctions}{33}{subsubsection.7.3.1}}
|
||||
\@writefile{toc}{\contentsline {subsubsection}{\numberline {7.3.2}Fichier d'ex\IeC {\'e}cution}{39}{subsubsection.7.3.2}}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {7.4}Fichiers source R pour EMV}{41}{subsection.7.4}}
|
19
rapport.bbl
Normal file
19
rapport.bbl
Normal file
|
@ -0,0 +1,19 @@
|
|||
\begin{thebibliography}{1}
|
||||
|
||||
\bibitem{james2000interest}
|
||||
J.~James and N.~Webber.
|
||||
\newblock {\em Interest rate modelling}.
|
||||
\newblock Wiley series in financial engineering. John Wiley \& Sons, 2000.
|
||||
|
||||
\bibitem{lai2008statistical}
|
||||
T.L. Lai and H.~Xing.
|
||||
\newblock {\em Statistical models and methods for financial markets}.
|
||||
\newblock Springer texts in statistics. Springer, 2008.
|
||||
|
||||
\bibitem{Newey_West_1987}
|
||||
W~K Newey and K~D West.
|
||||
\newblock A simple positive semi-definite heteroskedasticity and
|
||||
autocorrelation consistent covariance matrix.
|
||||
\newblock {\em Econometrica}, 1987.
|
||||
|
||||
\end{thebibliography}
|
46
rapport.blg
Normal file
46
rapport.blg
Normal file
|
@ -0,0 +1,46 @@
|
|||
This is BibTeX, Version 0.99d (TeX Live 2012/Debian)
|
||||
Capacity: max_strings=35307, hash_size=35307, hash_prime=30011
|
||||
The top-level auxiliary file: rapport.aux
|
||||
The style file: plain.bst
|
||||
Database file #1: biblio.bib
|
||||
You've used 3 entries,
|
||||
2118 wiz_defined-function locations,
|
||||
516 strings with 4475 characters,
|
||||
and the built_in function-call counts, 788 in all, are:
|
||||
= -- 75
|
||||
> -- 39
|
||||
< -- 0
|
||||
+ -- 16
|
||||
- -- 12
|
||||
* -- 40
|
||||
:= -- 148
|
||||
add.period$ -- 11
|
||||
call.type$ -- 3
|
||||
change.case$ -- 13
|
||||
chr.to.int$ -- 0
|
||||
cite$ -- 3
|
||||
duplicate$ -- 34
|
||||
empty$ -- 62
|
||||
format.name$ -- 12
|
||||
if$ -- 163
|
||||
int.to.chr$ -- 0
|
||||
int.to.str$ -- 3
|
||||
missing$ -- 5
|
||||
newline$ -- 18
|
||||
num.names$ -- 6
|
||||
pop$ -- 19
|
||||
preamble$ -- 1
|
||||
purify$ -- 12
|
||||
quote$ -- 0
|
||||
skip$ -- 22
|
||||
stack$ -- 0
|
||||
substring$ -- 16
|
||||
swap$ -- 3
|
||||
text.length$ -- 0
|
||||
text.prefix$ -- 0
|
||||
top$ -- 0
|
||||
type$ -- 8
|
||||
warning$ -- 0
|
||||
while$ -- 6
|
||||
width$ -- 4
|
||||
write$ -- 34
|
975
rapport.log
Normal file
975
rapport.log
Normal file
|
@ -0,0 +1,975 @@
|
|||
This is pdfTeX, Version 3.1415926-2.4-1.40.13 (TeX Live 2012/Debian) (format=pdflatex 2013.10.25) 2 NOV 2013 15:43
|
||||
entering extended mode
|
||||
restricted \write18 enabled.
|
||||
%&-line parsing enabled.
|
||||
**\input rapport.tex
|
||||
(./rapport.tex (/usr/share/texlive/texmf-dist/tex/latex/base/article.cls
|
||||
Document Class: article 2007/10/19 v1.4h Standard LaTeX document class
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/base/size10.clo
|
||||
File: size10.clo 2007/10/19 v1.4h Standard LaTeX file (size option)
|
||||
)
|
||||
\c@part=\count79
|
||||
\c@section=\count80
|
||||
\c@subsection=\count81
|
||||
\c@subsubsection=\count82
|
||||
\c@paragraph=\count83
|
||||
\c@subparagraph=\count84
|
||||
\c@figure=\count85
|
||||
\c@table=\count86
|
||||
\abovecaptionskip=\skip41
|
||||
\belowcaptionskip=\skip42
|
||||
\bibindent=\dimen102
|
||||
)
|
||||
(/var/lib/texmf/tex/generic/babel/babel.sty
|
||||
Package: babel 2008/07/08 v3.8m The Babel package
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/babel/frenchb.ldf
|
||||
Language: frenchb 2010/08/21 v2.5a French support from the babel system
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/babel/babel.def
|
||||
File: babel.def 2008/07/08 v3.8m Babel common definitions
|
||||
\babel@savecnt=\count87
|
||||
\U@D=\dimen103
|
||||
)
|
||||
Package babel Info: Making : an active character on input line 234.
|
||||
Package babel Info: Making ; an active character on input line 235.
|
||||
Package babel Info: Making ! an active character on input line 236.
|
||||
Package babel Info: Making ? an active character on input line 237.
|
||||
\FB@Mht=\dimen104
|
||||
\std@mcc=\count88
|
||||
\dec@mcc=\count89
|
||||
\parindentFFN=\dimen105
|
||||
|
||||
*************************************
|
||||
* Local config file frenchb.cfg used
|
||||
*
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/babel/frenchb.cfg)))
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/carlisle/scalefnt.sty)
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/graphics/keyval.sty
|
||||
Package: keyval 1999/03/16 v1.13 key=value parser (DPC)
|
||||
\KV@toks@=\toks14
|
||||
)
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/base/inputenc.sty
|
||||
Package: inputenc 2008/03/30 v1.1d Input encoding file
|
||||
\inpenc@prehook=\toks15
|
||||
\inpenc@posthook=\toks16
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/base/utf8.def
|
||||
File: utf8.def 2008/04/05 v1.1m UTF-8 support for inputenc
|
||||
Now handling font encoding OML ...
|
||||
... no UTF-8 mapping file for font encoding OML
|
||||
Now handling font encoding T1 ...
|
||||
... processing UTF-8 mapping file for font encoding T1
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/base/t1enc.dfu
|
||||
File: t1enc.dfu 2008/04/05 v1.1m UTF-8 support for inputenc
|
||||
defining Unicode char U+00A1 (decimal 161)
|
||||
defining Unicode char U+00A3 (decimal 163)
|
||||
defining Unicode char U+00AB (decimal 171)
|
||||
defining Unicode char U+00BB (decimal 187)
|
||||
defining Unicode char U+00BF (decimal 191)
|
||||
defining Unicode char U+00C0 (decimal 192)
|
||||
defining Unicode char U+00C1 (decimal 193)
|
||||
defining Unicode char U+00C2 (decimal 194)
|
||||
defining Unicode char U+00C3 (decimal 195)
|
||||
defining Unicode char U+00C4 (decimal 196)
|
||||
defining Unicode char U+00C5 (decimal 197)
|
||||
defining Unicode char U+00C6 (decimal 198)
|
||||
defining Unicode char U+00C7 (decimal 199)
|
||||
defining Unicode char U+00C8 (decimal 200)
|
||||
defining Unicode char U+00C9 (decimal 201)
|
||||
defining Unicode char U+00CA (decimal 202)
|
||||
defining Unicode char U+00CB (decimal 203)
|
||||
defining Unicode char U+00CC (decimal 204)
|
||||
defining Unicode char U+00CD (decimal 205)
|
||||
defining Unicode char U+00CE (decimal 206)
|
||||
defining Unicode char U+00CF (decimal 207)
|
||||
defining Unicode char U+00D0 (decimal 208)
|
||||
defining Unicode char U+00D1 (decimal 209)
|
||||
defining Unicode char U+00D2 (decimal 210)
|
||||
defining Unicode char U+00D3 (decimal 211)
|
||||
defining Unicode char U+00D4 (decimal 212)
|
||||
defining Unicode char U+00D5 (decimal 213)
|
||||
defining Unicode char U+00D6 (decimal 214)
|
||||
defining Unicode char U+00D8 (decimal 216)
|
||||
defining Unicode char U+00D9 (decimal 217)
|
||||
defining Unicode char U+00DA (decimal 218)
|
||||
defining Unicode char U+00DB (decimal 219)
|
||||
defining Unicode char U+00DC (decimal 220)
|
||||
defining Unicode char U+00DD (decimal 221)
|
||||
defining Unicode char U+00DE (decimal 222)
|
||||
defining Unicode char U+00DF (decimal 223)
|
||||
defining Unicode char U+00E0 (decimal 224)
|
||||
defining Unicode char U+00E1 (decimal 225)
|
||||
defining Unicode char U+00E2 (decimal 226)
|
||||
defining Unicode char U+00E3 (decimal 227)
|
||||
defining Unicode char U+00E4 (decimal 228)
|
||||
defining Unicode char U+00E5 (decimal 229)
|
||||
defining Unicode char U+00E6 (decimal 230)
|
||||
defining Unicode char U+00E7 (decimal 231)
|
||||
defining Unicode char U+00E8 (decimal 232)
|
||||
defining Unicode char U+00E9 (decimal 233)
|
||||
defining Unicode char U+00EA (decimal 234)
|
||||
defining Unicode char U+00EB (decimal 235)
|
||||
defining Unicode char U+00EC (decimal 236)
|
||||
defining Unicode char U+00ED (decimal 237)
|
||||
defining Unicode char U+00EE (decimal 238)
|
||||
defining Unicode char U+00EF (decimal 239)
|
||||
defining Unicode char U+00F0 (decimal 240)
|
||||
defining Unicode char U+00F1 (decimal 241)
|
||||
defining Unicode char U+00F2 (decimal 242)
|
||||
defining Unicode char U+00F3 (decimal 243)
|
||||
defining Unicode char U+00F4 (decimal 244)
|
||||
defining Unicode char U+00F5 (decimal 245)
|
||||
defining Unicode char U+00F6 (decimal 246)
|
||||
defining Unicode char U+00F8 (decimal 248)
|
||||
defining Unicode char U+00F9 (decimal 249)
|
||||
defining Unicode char U+00FA (decimal 250)
|
||||
defining Unicode char U+00FB (decimal 251)
|
||||
defining Unicode char U+00FC (decimal 252)
|
||||
defining Unicode char U+00FD (decimal 253)
|
||||
defining Unicode char U+00FE (decimal 254)
|
||||
defining Unicode char U+00FF (decimal 255)
|
||||
defining Unicode char U+0102 (decimal 258)
|
||||
defining Unicode char U+0103 (decimal 259)
|
||||
defining Unicode char U+0104 (decimal 260)
|
||||
defining Unicode char U+0105 (decimal 261)
|
||||
defining Unicode char U+0106 (decimal 262)
|
||||
defining Unicode char U+0107 (decimal 263)
|
||||
defining Unicode char U+010C (decimal 268)
|
||||
defining Unicode char U+010D (decimal 269)
|
||||
defining Unicode char U+010E (decimal 270)
|
||||
defining Unicode char U+010F (decimal 271)
|
||||
defining Unicode char U+0110 (decimal 272)
|
||||
defining Unicode char U+0111 (decimal 273)
|
||||
defining Unicode char U+0118 (decimal 280)
|
||||
defining Unicode char U+0119 (decimal 281)
|
||||
defining Unicode char U+011A (decimal 282)
|
||||
defining Unicode char U+011B (decimal 283)
|
||||
defining Unicode char U+011E (decimal 286)
|
||||
defining Unicode char U+011F (decimal 287)
|
||||
defining Unicode char U+0130 (decimal 304)
|
||||
defining Unicode char U+0131 (decimal 305)
|
||||
defining Unicode char U+0132 (decimal 306)
|
||||
defining Unicode char U+0133 (decimal 307)
|
||||
defining Unicode char U+0139 (decimal 313)
|
||||
defining Unicode char U+013A (decimal 314)
|
||||
defining Unicode char U+013D (decimal 317)
|
||||
defining Unicode char U+013E (decimal 318)
|
||||
defining Unicode char U+0141 (decimal 321)
|
||||
defining Unicode char U+0142 (decimal 322)
|
||||
defining Unicode char U+0143 (decimal 323)
|
||||
defining Unicode char U+0144 (decimal 324)
|
||||
defining Unicode char U+0147 (decimal 327)
|
||||
defining Unicode char U+0148 (decimal 328)
|
||||
defining Unicode char U+014A (decimal 330)
|
||||
defining Unicode char U+014B (decimal 331)
|
||||
defining Unicode char U+0150 (decimal 336)
|
||||
defining Unicode char U+0151 (decimal 337)
|
||||
defining Unicode char U+0152 (decimal 338)
|
||||
defining Unicode char U+0153 (decimal 339)
|
||||
defining Unicode char U+0154 (decimal 340)
|
||||
defining Unicode char U+0155 (decimal 341)
|
||||
defining Unicode char U+0158 (decimal 344)
|
||||
defining Unicode char U+0159 (decimal 345)
|
||||
defining Unicode char U+015A (decimal 346)
|
||||
defining Unicode char U+015B (decimal 347)
|
||||
defining Unicode char U+015E (decimal 350)
|
||||
defining Unicode char U+015F (decimal 351)
|
||||
defining Unicode char U+0160 (decimal 352)
|
||||
defining Unicode char U+0161 (decimal 353)
|
||||
defining Unicode char U+0162 (decimal 354)
|
||||
defining Unicode char U+0163 (decimal 355)
|
||||
defining Unicode char U+0164 (decimal 356)
|
||||
defining Unicode char U+0165 (decimal 357)
|
||||
defining Unicode char U+016E (decimal 366)
|
||||
defining Unicode char U+016F (decimal 367)
|
||||
defining Unicode char U+0170 (decimal 368)
|
||||
defining Unicode char U+0171 (decimal 369)
|
||||
defining Unicode char U+0178 (decimal 376)
|
||||
defining Unicode char U+0179 (decimal 377)
|
||||
defining Unicode char U+017A (decimal 378)
|
||||
defining Unicode char U+017B (decimal 379)
|
||||
defining Unicode char U+017C (decimal 380)
|
||||
defining Unicode char U+017D (decimal 381)
|
||||
defining Unicode char U+017E (decimal 382)
|
||||
defining Unicode char U+200C (decimal 8204)
|
||||
defining Unicode char U+2013 (decimal 8211)
|
||||
defining Unicode char U+2014 (decimal 8212)
|
||||
defining Unicode char U+2018 (decimal 8216)
|
||||
defining Unicode char U+2019 (decimal 8217)
|
||||
defining Unicode char U+201A (decimal 8218)
|
||||
defining Unicode char U+201C (decimal 8220)
|
||||
defining Unicode char U+201D (decimal 8221)
|
||||
defining Unicode char U+201E (decimal 8222)
|
||||
defining Unicode char U+2030 (decimal 8240)
|
||||
defining Unicode char U+2031 (decimal 8241)
|
||||
defining Unicode char U+2039 (decimal 8249)
|
||||
defining Unicode char U+203A (decimal 8250)
|
||||
defining Unicode char U+2423 (decimal 9251)
|
||||
)
|
||||
Now handling font encoding OT1 ...
|
||||
... processing UTF-8 mapping file for font encoding OT1
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/base/ot1enc.dfu
|
||||
File: ot1enc.dfu 2008/04/05 v1.1m UTF-8 support for inputenc
|
||||
defining Unicode char U+00A1 (decimal 161)
|
||||
defining Unicode char U+00A3 (decimal 163)
|
||||
defining Unicode char U+00B8 (decimal 184)
|
||||
defining Unicode char U+00BF (decimal 191)
|
||||
defining Unicode char U+00C5 (decimal 197)
|
||||
defining Unicode char U+00C6 (decimal 198)
|
||||
defining Unicode char U+00D8 (decimal 216)
|
||||
defining Unicode char U+00DF (decimal 223)
|
||||
defining Unicode char U+00E6 (decimal 230)
|
||||
defining Unicode char U+00EC (decimal 236)
|
||||
defining Unicode char U+00ED (decimal 237)
|
||||
defining Unicode char U+00EE (decimal 238)
|
||||
defining Unicode char U+00EF (decimal 239)
|
||||
defining Unicode char U+00F8 (decimal 248)
|
||||
defining Unicode char U+0131 (decimal 305)
|
||||
defining Unicode char U+0141 (decimal 321)
|
||||
defining Unicode char U+0142 (decimal 322)
|
||||
defining Unicode char U+0152 (decimal 338)
|
||||
defining Unicode char U+0153 (decimal 339)
|
||||
defining Unicode char U+2013 (decimal 8211)
|
||||
defining Unicode char U+2014 (decimal 8212)
|
||||
defining Unicode char U+2018 (decimal 8216)
|
||||
defining Unicode char U+2019 (decimal 8217)
|
||||
defining Unicode char U+201C (decimal 8220)
|
||||
defining Unicode char U+201D (decimal 8221)
|
||||
)
|
||||
Now handling font encoding OMS ...
|
||||
... processing UTF-8 mapping file for font encoding OMS
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/base/omsenc.dfu
|
||||
File: omsenc.dfu 2008/04/05 v1.1m UTF-8 support for inputenc
|
||||
defining Unicode char U+00A7 (decimal 167)
|
||||
defining Unicode char U+00B6 (decimal 182)
|
||||
defining Unicode char U+00B7 (decimal 183)
|
||||
defining Unicode char U+2020 (decimal 8224)
|
||||
defining Unicode char U+2021 (decimal 8225)
|
||||
defining Unicode char U+2022 (decimal 8226)
|
||||
)
|
||||
Now handling font encoding OMX ...
|
||||
... no UTF-8 mapping file for font encoding OMX
|
||||
Now handling font encoding U ...
|
||||
... no UTF-8 mapping file for font encoding U
|
||||
defining Unicode char U+00A9 (decimal 169)
|
||||
defining Unicode char U+00AA (decimal 170)
|
||||
defining Unicode char U+00AE (decimal 174)
|
||||
defining Unicode char U+00BA (decimal 186)
|
||||
defining Unicode char U+02C6 (decimal 710)
|
||||
defining Unicode char U+02DC (decimal 732)
|
||||
defining Unicode char U+200C (decimal 8204)
|
||||
defining Unicode char U+2026 (decimal 8230)
|
||||
defining Unicode char U+2122 (decimal 8482)
|
||||
defining Unicode char U+2423 (decimal 9251)
|
||||
))
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/ae/ae.sty
|
||||
Package: ae 2001/02/12 1.3 Almost European Computer Modern
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/base/fontenc.sty
|
||||
Package: fontenc 2005/09/27 v1.99g Standard LaTeX package
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/base/t1enc.def
|
||||
File: t1enc.def 2005/09/27 v1.99g Standard LaTeX file
|
||||
LaTeX Font Info: Redeclaring font encoding T1 on input line 43.
|
||||
)
|
||||
LaTeX Font Info: Try loading font information for T1+aer on input line 100.
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/ae/t1aer.fd
|
||||
File: t1aer.fd 1997/11/16 Font definitions for T1/aer.
|
||||
)))
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/aeguill/aeguill.sty
|
||||
Package: aeguill 2003/08/02 1.02 AE fonts with french guillemets (D. Roegel)
|
||||
)
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsmath.sty
|
||||
Package: amsmath 2000/07/18 v2.13 AMS math features
|
||||
\@mathmargin=\skip43
|
||||
|
||||
For additional information on amsmath, use the `?' option.
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/amsmath/amstext.sty
|
||||
Package: amstext 2000/06/29 v2.01
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsgen.sty
|
||||
File: amsgen.sty 1999/11/30 v2.0
|
||||
\@emptytoks=\toks17
|
||||
\ex@=\dimen106
|
||||
))
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsbsy.sty
|
||||
Package: amsbsy 1999/11/29 v1.2d
|
||||
\pmbraise@=\dimen107
|
||||
)
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsopn.sty
|
||||
Package: amsopn 1999/12/14 v2.01 operator names
|
||||
)
|
||||
\inf@bad=\count90
|
||||
LaTeX Info: Redefining \frac on input line 211.
|
||||
\uproot@=\count91
|
||||
\leftroot@=\count92
|
||||
LaTeX Info: Redefining \overline on input line 307.
|
||||
\classnum@=\count93
|
||||
\DOTSCASE@=\count94
|
||||
LaTeX Info: Redefining \ldots on input line 379.
|
||||
LaTeX Info: Redefining \dots on input line 382.
|
||||
LaTeX Info: Redefining \cdots on input line 467.
|
||||
\Mathstrutbox@=\box26
|
||||
\strutbox@=\box27
|
||||
\big@size=\dimen108
|
||||
LaTeX Font Info: Redeclaring font encoding OML on input line 567.
|
||||
LaTeX Font Info: Redeclaring font encoding OMS on input line 568.
|
||||
\macc@depth=\count95
|
||||
\c@MaxMatrixCols=\count96
|
||||
\dotsspace@=\muskip10
|
||||
\c@parentequation=\count97
|
||||
\dspbrk@lvl=\count98
|
||||
\tag@help=\toks18
|
||||
\row@=\count99
|
||||
\column@=\count100
|
||||
\maxfields@=\count101
|
||||
\andhelp@=\toks19
|
||||
\eqnshift@=\dimen109
|
||||
\alignsep@=\dimen110
|
||||
\tagshift@=\dimen111
|
||||
\tagwidth@=\dimen112
|
||||
\totwidth@=\dimen113
|
||||
\lineht@=\dimen114
|
||||
\@envbody=\toks20
|
||||
\multlinegap=\skip44
|
||||
\multlinetaggap=\skip45
|
||||
\mathdisplay@stack=\toks21
|
||||
LaTeX Info: Redefining \[ on input line 2666.
|
||||
LaTeX Info: Redefining \] on input line 2667.
|
||||
)
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/graphics/graphicx.sty
|
||||
Package: graphicx 1999/02/16 v1.0f Enhanced LaTeX Graphics (DPC,SPQR)
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/graphics/graphics.sty
|
||||
Package: graphics 2009/02/05 v1.0o Standard LaTeX Graphics (DPC,SPQR)
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/graphics/trig.sty
|
||||
Package: trig 1999/03/16 v1.09 sin cos tan (DPC)
|
||||
)
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/latexconfig/graphics.cfg
|
||||
File: graphics.cfg 2010/04/23 v1.9 graphics configuration of TeX Live
|
||||
)
|
||||
Package graphics Info: Driver file: pdftex.def on input line 91.
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/pdftex-def/pdftex.def
|
||||
File: pdftex.def 2011/05/27 v0.06d Graphics/color for pdfTeX
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/infwarerr.sty
|
||||
Package: infwarerr 2010/04/08 v1.3 Providing info/warning/error messages (HO)
|
||||
)
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/ltxcmds.sty
|
||||
Package: ltxcmds 2011/11/09 v1.22 LaTeX kernel commands for general use (HO)
|
||||
)
|
||||
\Gread@gobject=\count102
|
||||
))
|
||||
\Gin@req@height=\dimen115
|
||||
\Gin@req@width=\dimen116
|
||||
)
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/hyperref/hyperref.sty
|
||||
Package: hyperref 2012/05/13 v6.82q Hypertext links for LaTeX
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/hobsub-hyperref.sty
|
||||
Package: hobsub-hyperref 2012/05/28 v1.13 Bundle oberdiek, subset hyperref (HO)
|
||||
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/hobsub-generic.sty
|
||||
Package: hobsub-generic 2012/05/28 v1.13 Bundle oberdiek, subset generic (HO)
|
||||
Package: hobsub 2012/05/28 v1.13 Construct package bundles (HO)
|
||||
Package hobsub Info: Skipping package `infwarerr' (already loaded).
|
||||
Package hobsub Info: Skipping package `ltxcmds' (already loaded).
|
||||
Package: ifluatex 2010/03/01 v1.3 Provides the ifluatex switch (HO)
|
||||
Package ifluatex Info: LuaTeX not detected.
|
||||
Package: ifvtex 2010/03/01 v1.5 Detect VTeX and its facilities (HO)
|
||||
Package ifvtex Info: VTeX not detected.
|
||||
Package: intcalc 2007/09/27 v1.1 Expandable calculations with integers (HO)
|
||||
Package: ifpdf 2011/01/30 v2.3 Provides the ifpdf switch (HO)
|
||||
Package ifpdf Info: pdfTeX in PDF mode is detected.
|
||||
Package: etexcmds 2011/02/16 v1.5 Avoid name clashes with e-TeX commands (HO)
|
||||
Package etexcmds Info: Could not find \expanded.
|
||||
(etexcmds) That can mean that you are not using pdfTeX 1.50 or
|
||||
(etexcmds) that some package has redefined \expanded.
|
||||
(etexcmds) In the latter case, load this package earlier.
|
||||
Package: kvsetkeys 2012/04/25 v1.16 Key value parser (HO)
|
||||
Package: kvdefinekeys 2011/04/07 v1.3 Define keys (HO)
|
||||
Package: pdftexcmds 2011/11/29 v0.20 Utility functions of pdfTeX for LuaTeX (HO
|
||||
)
|
||||
Package pdftexcmds Info: LuaTeX not detected.
|
||||
Package pdftexcmds Info: \pdf@primitive is available.
|
||||
Package pdftexcmds Info: \pdf@ifprimitive is available.
|
||||
Package pdftexcmds Info: \pdfdraftmode found.
|
||||
Package: pdfescape 2011/11/25 v1.13 Implements pdfTeX's escape features (HO)
|
||||
Package: bigintcalc 2012/04/08 v1.3 Expandable calculations on big integers (HO
|
||||
)
|
||||
Package: bitset 2011/01/30 v1.1 Handle bit-vector datatype (HO)
|
||||
Package: uniquecounter 2011/01/30 v1.2 Provide unlimited unique counter (HO)
|
||||
)
|
||||
Package hobsub Info: Skipping package `hobsub' (already loaded).
|
||||
Package: letltxmacro 2010/09/02 v1.4 Let assignment for LaTeX macros (HO)
|
||||
Package: hopatch 2012/05/28 v1.2 Wrapper for package hooks (HO)
|
||||
Package: xcolor-patch 2011/01/30 xcolor patch
|
||||
Package: atveryend 2011/06/30 v1.8 Hooks at the very end of document (HO)
|
||||
Package atveryend Info: \enddocument detected (standard20110627).
|
||||
Package: atbegshi 2011/10/05 v1.16 At begin shipout hook (HO)
|
||||
Package: refcount 2011/10/16 v3.4 Data extraction from label references (HO)
|
||||
Package: hycolor 2011/01/30 v1.7 Color options for hyperref/bookmark (HO)
|
||||
)
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/ifxetex/ifxetex.sty
|
||||
Package: ifxetex 2010/09/12 v0.6 Provides ifxetex conditional
|
||||
)
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/oberdiek/kvoptions.sty
|
||||
Package: kvoptions 2011/06/30 v3.11 Key value format for package options (HO)
|
||||
)
|
||||
\@linkdim=\dimen117
|
||||
\Hy@linkcounter=\count103
|
||||
\Hy@pagecounter=\count104
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/hyperref/pd1enc.def
|
||||
File: pd1enc.def 2012/05/13 v6.82q Hyperref: PDFDocEncoding definition (HO)
|
||||
Now handling font encoding PD1 ...
|
||||
... no UTF-8 mapping file for font encoding PD1
|
||||
)
|
||||
\Hy@SavedSpaceFactor=\count105
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/latexconfig/hyperref.cfg
|
||||
File: hyperref.cfg 2002/06/06 v1.2 hyperref configuration of TeXLive
|
||||
)
|
||||
Package hyperref Info: Hyper figures OFF on input line 4062.
|
||||
Package hyperref Info: Link nesting OFF on input line 4067.
|
||||
Package hyperref Info: Hyper index ON on input line 4070.
|
||||
Package hyperref Info: Plain pages OFF on input line 4077.
|
||||
Package hyperref Info: Backreferencing OFF on input line 4082.
|
||||
Package hyperref Info: Implicit mode ON; LaTeX internals redefined.
|
||||
Package hyperref Info: Bookmarks ON on input line 4300.
|
||||
\c@Hy@tempcnt=\count106
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/url/url.sty
|
||||
\Urlmuskip=\muskip11
|
||||
Package: url 2006/04/12 ver 3.3 Verb mode for urls, etc.
|
||||
)
|
||||
LaTeX Info: Redefining \url on input line 4653.
|
||||
\Fld@menulength=\count107
|
||||
\Field@Width=\dimen118
|
||||
\Fld@charsize=\dimen119
|
||||
Package hyperref Info: Hyper figures OFF on input line 5773.
|
||||
Package hyperref Info: Link nesting OFF on input line 5778.
|
||||
Package hyperref Info: Hyper index ON on input line 5781.
|
||||
Package hyperref Info: backreferencing OFF on input line 5788.
|
||||
Package hyperref Info: Link coloring OFF on input line 5793.
|
||||
Package hyperref Info: Link coloring with OCG OFF on input line 5798.
|
||||
Package hyperref Info: PDF/A mode OFF on input line 5803.
|
||||
LaTeX Info: Redefining \ref on input line 5843.
|
||||
LaTeX Info: Redefining \pageref on input line 5847.
|
||||
\Hy@abspage=\count108
|
||||
\c@Item=\count109
|
||||
\c@Hfootnote=\count110
|
||||
)
|
||||
|
||||
Package hyperref Message: Driver (autodetected): hpdftex.
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/hyperref/hpdftex.def
|
||||
File: hpdftex.def 2012/05/13 v6.82q Hyperref driver for pdfTeX
|
||||
\Fld@listcount=\count111
|
||||
\c@bookmark@seq@number=\count112
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/oberdiek/rerunfilecheck.sty
|
||||
Package: rerunfilecheck 2011/04/15 v1.7 Rerun checks for auxiliary files (HO)
|
||||
Package uniquecounter Info: New unique counter `rerunfilecheck' on input line 2
|
||||
82.
|
||||
)
|
||||
\Hy@SectionHShift=\skip46
|
||||
)
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/amsfonts/amsfonts.sty
|
||||
Package: amsfonts 2009/06/22 v3.00 Basic AMSFonts support
|
||||
\symAMSa=\mathgroup4
|
||||
\symAMSb=\mathgroup5
|
||||
LaTeX Font Info: Overwriting math alphabet `\mathfrak' in version `bold'
|
||||
(Font) U/euf/m/n --> U/euf/b/n on input line 96.
|
||||
)
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/tools/verbatim.sty
|
||||
Package: verbatim 2003/08/22 v1.5q LaTeX2e package for verbatim enhancements
|
||||
\every@verbatim=\toks22
|
||||
\verbatim@line=\toks23
|
||||
\verbatim@in@stream=\read1
|
||||
)
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/graphics/lscape.sty
|
||||
Package: lscape 2000/10/22 v3.01 Landscape Pages (DPC)
|
||||
)
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/tools/tabularx.sty
|
||||
Package: tabularx 1999/01/07 v2.07 `tabularx' package (DPC)
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/tools/array.sty
|
||||
Package: array 2008/09/09 v2.4c Tabular extension package (FMi)
|
||||
\col@sep=\dimen120
|
||||
\extrarowheight=\dimen121
|
||||
\NC@list=\toks24
|
||||
\extratabsurround=\skip47
|
||||
\backup@length=\skip48
|
||||
)
|
||||
\TX@col@width=\dimen122
|
||||
\TX@old@table=\dimen123
|
||||
\TX@old@col=\dimen124
|
||||
\TX@target=\dimen125
|
||||
\TX@delta=\dimen126
|
||||
\TX@cols=\count113
|
||||
\TX@ftn=\toks25
|
||||
) (./rapport.aux)
|
||||
\openout1 = `rapport.aux'.
|
||||
|
||||
LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 21.
|
||||
LaTeX Font Info: ... okay on input line 21.
|
||||
LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 21.
|
||||
LaTeX Font Info: ... okay on input line 21.
|
||||
LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 21.
|
||||
LaTeX Font Info: ... okay on input line 21.
|
||||
LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 21.
|
||||
LaTeX Font Info: ... okay on input line 21.
|
||||
LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 21.
|
||||
LaTeX Font Info: ... okay on input line 21.
|
||||
LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 21.
|
||||
LaTeX Font Info: ... okay on input line 21.
|
||||
LaTeX Font Info: Checking defaults for PD1/pdf/m/n on input line 21.
|
||||
LaTeX Font Info: ... okay on input line 21.
|
||||
LaTeX Info: Redefining \degres on input line 21.
|
||||
LaTeX Info: Redefining \dots on input line 21.
|
||||
LaTeX Info: Redefining \up on input line 21.
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/context/base/supp-pdf.mkii
|
||||
[Loading MPS to PDF converter (version 2006.09.02).]
|
||||
\scratchcounter=\count114
|
||||
\scratchdimen=\dimen127
|
||||
\scratchbox=\box28
|
||||
\nofMPsegments=\count115
|
||||
\nofMParguments=\count116
|
||||
\everyMPshowfont=\toks26
|
||||
\MPscratchCnt=\count117
|
||||
\MPscratchDim=\dimen128
|
||||
\MPnumerator=\count118
|
||||
\makeMPintoPDFobject=\count119
|
||||
\everyMPtoPDFconversion=\toks27
|
||||
) (/usr/share/texlive/texmf-dist/tex/latex/oberdiek/epstopdf-base.sty
|
||||
Package: epstopdf-base 2010/02/09 v2.5 Base part for package epstopdf
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/oberdiek/grfext.sty
|
||||
Package: grfext 2010/08/19 v1.1 Manage graphics extensions (HO)
|
||||
)
|
||||
Package grfext Info: Graphics extension search list:
|
||||
(grfext) [.png,.pdf,.jpg,.mps,.jpeg,.jbig2,.jb2,.PNG,.PDF,.JPG,.JPE
|
||||
G,.JBIG2,.JB2,.eps]
|
||||
(grfext) \AppendGraphicsExtensions on input line 452.
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg
|
||||
File: epstopdf-sys.cfg 2010/07/13 v1.3 Configuration of (r)epstopdf for TeX Liv
|
||||
e
|
||||
))
|
||||
\AtBeginShipoutBox=\box29
|
||||
Package hyperref Info: Link coloring OFF on input line 21.
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/hyperref/nameref.sty
|
||||
Package: nameref 2010/04/30 v2.40 Cross-referencing by name of section
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/gettitlestring.sty
|
||||
Package: gettitlestring 2010/12/03 v1.4 Cleanup title references (HO)
|
||||
)
|
||||
\c@section@level=\count120
|
||||
)
|
||||
LaTeX Info: Redefining \ref on input line 21.
|
||||
LaTeX Info: Redefining \pageref on input line 21.
|
||||
LaTeX Info: Redefining \nameref on input line 21.
|
||||
|
||||
(./rapport.out) (./rapport.out)
|
||||
\@outlinefile=\write3
|
||||
\openout3 = `rapport.out'.
|
||||
|
||||
(./rapport-titlepage.tex
|
||||
LaTeX Font Info: Try loading font information for U+msa on input line 24.
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/amsfonts/umsa.fd
|
||||
File: umsa.fd 2009/06/22 v3.00 AMS symbols A
|
||||
)
|
||||
LaTeX Font Info: Try loading font information for U+msb on input line 24.
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/amsfonts/umsb.fd
|
||||
File: umsb.fd 2009/06/22 v3.00 AMS symbols B
|
||||
) [1
|
||||
|
||||
{/var/lib/texmf/fonts/map/pdftex/updmap/pdftex.map}]) (./rapport.toc)
|
||||
\tf@toc=\write4
|
||||
\openout4 = `rapport.toc'.
|
||||
|
||||
pdfTeX warning (ext4): destination with the same identifier (name{page.1}) has
|
||||
been already used, duplicate ignored
|
||||
<to be read again>
|
||||
\relax
|
||||
l.28 \newpage
|
||||
[1] [2] (./introduction.tex) [3] (./rapport-nelsonsiegel.tex
|
||||
Underfull \hbox (badness 10000) in paragraph at lines 3--4
|
||||
|
||||
[]
|
||||
|
||||
|
||||
Underfull \hbox (badness 10000) in paragraph at lines 11--12
|
||||
|
||||
[]
|
||||
|
||||
|
||||
Underfull \hbox (badness 10000) in paragraph at lines 13--14
|
||||
|
||||
[]
|
||||
|
||||
|
||||
Underfull \hbox (badness 10000) in paragraph at lines 15--16
|
||||
|
||||
[]
|
||||
|
||||
[4] <nelsonsiegel-plots.pdf, id=241, page=2, 505.89pt x 505.89pt>
|
||||
File: nelsonsiegel-plots.pdf Graphic file (type pdf)
|
||||
|
||||
<use nelsonsiegel-plots.pdf, page 2>
|
||||
Package pdftex.def Info: nelsonsiegel-plots.pdf, page2 used on input line 56.
|
||||
(pdftex.def) Requested size: 252.94437pt x 252.94437pt.
|
||||
[5]
|
||||
<nelsonsiegel-plots.pdf, id=250, page=3, 505.89pt x 505.89pt>
|
||||
File: nelsonsiegel-plots.pdf Graphic file (type pdf)
|
||||
|
||||
<use nelsonsiegel-plots.pdf, page 3>
|
||||
Package pdftex.def Info: nelsonsiegel-plots.pdf, page3 used on input line 60.
|
||||
(pdftex.def) Requested size: 252.94437pt x 252.94437pt.
|
||||
[6 <./nelsonsiegel-plots.pdf> <./nelsonsiegel-plots.pdf>] <nelsonsiegel-plots.
|
||||
pdf, id=263, page=4, 505.89pt x 505.89pt>
|
||||
File: nelsonsiegel-plots.pdf Graphic file (type pdf)
|
||||
|
||||
<use nelsonsiegel-plots.pdf, page 4>
|
||||
Package pdftex.def Info: nelsonsiegel-plots.pdf, page4 used on input line 64.
|
||||
(pdftex.def) Requested size: 252.94437pt x 252.94437pt.
|
||||
|
||||
<nelsonsiegel-plots.pdf, id=264, page=5, 505.89pt x 505.89pt>
|
||||
File: nelsonsiegel-plots.pdf Graphic file (type pdf)
|
||||
|
||||
<use nelsonsiegel-plots.pdf, page 5>
|
||||
Package pdftex.def Info: nelsonsiegel-plots.pdf, page5 used on input line 68.
|
||||
(pdftex.def) Requested size: 252.94437pt x 252.94437pt.
|
||||
[7 <./nelsonsiegel-plots.pdf> <./nelsonsiegel-plots.pdf>] <nelsonsiegel-plots.
|
||||
pdf, id=276, page=1, 505.89pt x 505.89pt>
|
||||
File: nelsonsiegel-plots.pdf Graphic file (type pdf)
|
||||
|
||||
<use nelsonsiegel-plots.pdf, page 1>
|
||||
Package pdftex.def Info: nelsonsiegel-plots.pdf, page1 used on input line 74.
|
||||
(pdftex.def) Requested size: 379.41655pt x 379.41655pt.
|
||||
[8 <./nelsonsiegel-plots.pdf>]) [9]
|
||||
(./rapport-principalcomponent.tex
|
||||
Underfull \hbox (badness 10000) in paragraph at lines 3--4
|
||||
|
||||
[]
|
||||
|
||||
[10] <PCA-tseries.pdf, id=299, 505.89pt x 505.89pt>
|
||||
File: PCA-tseries.pdf Graphic file (type pdf)
|
||||
<use PCA-tseries.pdf>
|
||||
Package pdftex.def Info: PCA-tseries.pdf used on input line 47.
|
||||
(pdftex.def) Requested size: 379.41655pt x 379.41655pt.
|
||||
|
||||
[11 <./PCA-tseries.pdf>] (./PCA-Pcov.tex) (./PCA-lambdacov.tex)
|
||||
(./PCA-prcov.tex) [12] (./PCA-Pcorr.tex) (./PCA-lambdacorr.tex)
|
||||
(./PCA-prcorr.tex) <PCA-composantes1-2-3.pdf, id=315, 505.89pt x 505.89pt>
|
||||
File: PCA-composantes1-2-3.pdf Graphic file (type pdf)
|
||||
|
||||
<use PCA-composantes1-2-3.pdf>
|
||||
Package pdftex.def Info: PCA-composantes1-2-3.pdf used on input line 83.
|
||||
(pdftex.def) Requested size: 379.41655pt x 379.41655pt.
|
||||
[13]
|
||||
<PCA-score.pdf, id=321, 505.89pt x 505.89pt>
|
||||
File: PCA-score.pdf Graphic file (type pdf)
|
||||
<use PCA-score.pdf>
|
||||
Package pdftex.def Info: PCA-score.pdf used on input line 97.
|
||||
(pdftex.def) Requested size: 379.41655pt x 379.41655pt.
|
||||
[14 <./PCA-composantes1-2-3.pdf>]) [15 <./PCA-score.pdf>] (./rapport-gmm.tex
|
||||
Underfull \hbox (badness 10000) in paragraph at lines 4--5
|
||||
|
||||
[]
|
||||
|
||||
|
||||
Underfull \hbox (badness 10000) in paragraph at lines 6--8
|
||||
|
||||
[]
|
||||
|
||||
|
||||
Underfull \hbox (badness 10000) in paragraph at lines 9--10
|
||||
|
||||
[]
|
||||
|
||||
|
||||
Underfull \hbox (badness 10000) in paragraph at lines 11--12
|
||||
|
||||
[]
|
||||
|
||||
[16] [17] [18] [19] [20]
|
||||
Overfull \hbox (25.42929pt too wide) in alignment at lines 170--177
|
||||
[][][] []
|
||||
[]
|
||||
|
||||
[21
|
||||
|
||||
] [22
|
||||
|
||||
]
|
||||
LaTeX Font Info: Try loading font information for T1+aett on input line 201.
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/ae/t1aett.fd
|
||||
File: t1aett.fd 1997/11/16 Font definitions for T1/aett.
|
||||
)
|
||||
File: GMM-dates.txt (verbatim)
|
||||
|
||||
<serieGMM.pdf, id=403, 505.89pt x 505.89pt>
|
||||
File: serieGMM.pdf Graphic file (type pdf)
|
||||
<use serieGMM.pdf>
|
||||
Package pdftex.def Info: serieGMM.pdf used on input line 205.
|
||||
(pdftex.def) Requested size: 379.41655pt x 379.41655pt.
|
||||
File: summaryDonneesGMM.txt (verbatim)
|
||||
|
||||
Underfull \hbox (badness 10000) in paragraph at lines 215--216
|
||||
|
||||
[]
|
||||
|
||||
[23 <./serieGMM.pdf>] (./MMGestimation.tex)
|
||||
Underfull \hbox (badness 10000) in paragraph at lines 219--220
|
||||
|
||||
[]
|
||||
|
||||
) [24] (./rapport-mle.tex [25] [26] (./MLE-dates.tex)
|
||||
Underfull \hbox (badness 10000) in paragraph at lines 77--78
|
||||
|
||||
[]
|
||||
|
||||
(./MLE-param.tex)) [27] (./bibliographie.tex (./rapport.bbl)) [28]
|
||||
(./annexe.tex
|
||||
File: nelsonsiegel.r (verbatim)
|
||||
[29]
|
||||
File: pca.r (verbatim)
|
||||
|
||||
Overfull \hbox (39.91919pt too wide) in paragraph at lines 10--10
|
||||
[]\T1/aett/m/n/10 yc <- data.matrix(read.table("usgg.csv",header=T, sep=";",na.
|
||||
strings = "#NA"))[,-1][]
|
||||
[]
|
||||
|
||||
[30] [31] [32]
|
||||
File: gmm.r (verbatim)
|
||||
|
||||
Overfull \hbox (29.43921pt too wide) in paragraph at lines 16--16
|
||||
[] \T1/aett/m/n/10 g2t <- (donneesF - a - b * donneesL) ^ 2 - sigma^2 * do
|
||||
nneesL ^ (2*gamma) *[]
|
||||
[]
|
||||
|
||||
|
||||
Overfull \hbox (45.15918pt too wide) in paragraph at lines 16--16
|
||||
[] \T1/aett/m/n/10 g4t <- ((donneesF - a - b * donneesL) ^ 2 - sigma ^ 2 *
|
||||
donneesL ^ (2*gamma) *[]
|
||||
[]
|
||||
|
||||
|
||||
Overfull \hbox (34.6792pt too wide) in paragraph at lines 16--16
|
||||
[] \T1/aett/m/n/10 g2t <- (donneesF - a - b * donneesL) ^ 2 - sigma ^ 2 *
|
||||
donneesL * deltaTemps[]
|
||||
[]
|
||||
|
||||
|
||||
Overfull \hbox (55.63916pt too wide) in paragraph at lines 16--16
|
||||
[] \T1/aett/m/n/10 g4t <- ((donneesF - a - b * donneesL) ^ 2 - sigma ^ 2 *
|
||||
donneesL * deltaTemps) *[]
|
||||
[]
|
||||
|
||||
|
||||
Overfull \hbox (45.15918pt too wide) in paragraph at lines 16--16
|
||||
[] \T1/aett/m/n/10 g4t <- ((donneesF - a - b * donneesL) ^ 2 - sigma ^ 2 *
|
||||
deltaTemps) * donneesL[]
|
||||
[]
|
||||
|
||||
[33] [34] [35]
|
||||
Overfull \hbox (55.63916pt too wide) in paragraph at lines 16--16
|
||||
[] \T1/aett/m/n/10 g2 <- sum((donneesF - a - b * donneesL) ^ 2 - sigma^2
|
||||
* donneesL ^ (2*gamma) *[]
|
||||
[]
|
||||
|
||||
|
||||
Overfull \hbox (71.35913pt too wide) in paragraph at lines 16--16
|
||||
[] \T1/aett/m/n/10 g4 <- sum(((donneesF - a - b * donneesL) ^ 2 - sigma
|
||||
^ 2 * donneesL ^ (2*gamma) *[]
|
||||
[]
|
||||
|
||||
[36]
|
||||
Overfull \hbox (66.11914pt too wide) in paragraph at lines 16--16
|
||||
[] \T1/aett/m/n/10 g2 <- sum((donneesF - a - b * donneesL) ^ 2 - sigma ^
|
||||
2 * donneesL * deltaTemps)[]
|
||||
[]
|
||||
|
||||
|
||||
Overfull \hbox (76.59912pt too wide) in paragraph at lines 16--16
|
||||
[] \T1/aett/m/n/10 g4 <- sum(((donneesF - a - b * donneesL) ^ 2 - sigma
|
||||
^ 2 * donneesL * deltaTemps)*[]
|
||||
[]
|
||||
|
||||
|
||||
Overfull \hbox (8.47925pt too wide) in paragraph at lines 16--16
|
||||
[] \T1/aett/m/n/10 g2 <- sum((donneesF - a - b * donneesL) ^ 2 - sigma ^
|
||||
2 * deltaTemps)[]
|
||||
[]
|
||||
|
||||
|
||||
Overfull \hbox (24.19922pt too wide) in paragraph at lines 16--16
|
||||
[] \T1/aett/m/n/10 g4 <- sum(((donneesF - a - b * donneesL) ^ 2 - sigma
|
||||
^ 2 * deltaTemps) *[]
|
||||
[]
|
||||
|
||||
[37]
|
||||
Overfull \hbox (29.43921pt too wide) in paragraph at lines 16--16
|
||||
[] \T1/aett/m/n/10 estim <- nlminb(Initialparam,MMGobjectif,gr=NULL,he
|
||||
ssian=NULL,modele,W)[]
|
||||
[]
|
||||
|
||||
[38]
|
||||
Overfull \hbox (8.47925pt too wide) in paragraph at lines 16--16
|
||||
[] \T1/aett/m/n/10 Varparam=Varparam,param = c(Ralpha,Rbeta,Rsigma2,Rga
|
||||
mma), Fval=Fval,[]
|
||||
[]
|
||||
|
||||
File: gmmexec.r (verbatim)
|
||||
|
||||
Overfull \hbox (45.15918pt too wide) in paragraph at lines 20--20
|
||||
[] \T1/aett/m/n/10 header=T, sep=";",na.strings = "
|
||||
#NA"))[(1:50)*30,2]/100[]
|
||||
[]
|
||||
|
||||
|
||||
Overfull \hbox (24.19922pt too wide) in paragraph at lines 20--20
|
||||
[] \T1/aett/m/n/10 header=T, sep=";",na.strings = "
|
||||
#NA")[c(1,1500),1])[]
|
||||
[]
|
||||
|
||||
[39]
|
||||
Overfull \hbox (3.23926pt too wide) in paragraph at lines 20--20
|
||||
[] \T1/aett/m/n/10 dimnames=list(nomsParam,c("Est. param.","T-Stat
|
||||
","p-value"))),[]
|
||||
[]
|
||||
|
||||
|
||||
Overfull \hbox (8.47925pt too wide) in paragraph at lines 20--20
|
||||
[] \T1/aett/m/n/10 dimnames=list(nomsParam2,c("Est. param.","T-Sta
|
||||
t","p-value"))),[]
|
||||
[]
|
||||
|
||||
|
||||
Overfull \hbox (8.47925pt too wide) in paragraph at lines 20--20
|
||||
[] \T1/aett/m/n/10 dimnames=list(nomsParam2,c("Est. param.","T-Sta
|
||||
t","p-value"))),[]
|
||||
[]
|
||||
|
||||
|
||||
Overfull \hbox (24.19922pt too wide) in paragraph at lines 20--20
|
||||
[] \T1/aett/m/n/10 caption="Matrice de Var-Cov des par. pour modèle CKLS
|
||||
avec GMM",digits=5)[]
|
||||
[]
|
||||
|
||||
[40]
|
||||
Overfull \hbox (39.91919pt too wide) in paragraph at lines 20--20
|
||||
[] \T1/aett/m/n/10 caption="Matrice de Var-Cov des par. pour modèle Vasic
|
||||
ek avec GMM",digits=5)[]
|
||||
[]
|
||||
|
||||
|
||||
Overfull \hbox (18.95923pt too wide) in paragraph at lines 20--20
|
||||
[] \T1/aett/m/n/10 caption="Matrice de Var-Cov des par. pour modèle CIR a
|
||||
vec GMM",digits=5)[]
|
||||
[]
|
||||
|
||||
File: mlevasicek.r (verbatim)
|
||||
[41]
|
||||
Overfull \hbox (66.11914pt too wide) in paragraph at lines 24--24
|
||||
[] \T1/aett/m/n/10 variance <- RF[-n] * sigma^2/alpha * (exp(-alpha * DELTA)
|
||||
- exp(-2*alpha * DELTA)) +[]
|
||||
[]
|
||||
|
||||
|
||||
Overfull \hbox (34.6792pt too wide) in paragraph at lines 24--24
|
||||
[] \T1/aett/m/n/10 caption="Paramètres estimés par maximum de vraisembl
|
||||
ance pour 2 modèles",[]
|
||||
[]
|
||||
|
||||
[42]) [43] (./cc.tex <by-sa.pdf, id=519, 121.45375pt x 43.16125pt>
|
||||
File: by-sa.pdf Graphic file (type pdf)
|
||||
|
||||
<use by-sa.pdf>
|
||||
Package pdftex.def Info: by-sa.pdf used on input line 1.
|
||||
(pdftex.def) Requested size: 56.04544pt x 19.91692pt.
|
||||
|
||||
Underfull \hbox (badness 10000) in paragraph at lines 1--7
|
||||
|
||||
[]
|
||||
|
||||
|
||||
Underfull \hbox (badness 10000) in paragraph at lines 17--18
|
||||
|
||||
[]
|
||||
|
||||
<by.pdf, id=521, 56.21pt x 56.21pt> <use by.pdf>
|
||||
<sa.pdf, id=522, 56.21pt x 56.21pt> <use sa.pdf> <use by.pdf> <use sa.pdf>
|
||||
File: by.pdf Graphic file (type pdf)
|
||||
|
||||
<use by.pdf>
|
||||
Package pdftex.def Info: by.pdf used on input line 32.
|
||||
(pdftex.def) Requested size: 31.29811pt x 31.29802pt.
|
||||
File: sa.pdf Graphic file (type pdf)
|
||||
<use sa.pdf>
|
||||
Package pdftex.def Info: sa.pdf used on input line 32.
|
||||
(pdftex.def) Requested size: 31.29811pt x 31.29802pt.
|
||||
|
||||
Overfull \hbox (15.0pt too wide) in paragraph at lines 32--33
|
||||
[][]
|
||||
[]
|
||||
|
||||
)
|
||||
Package atveryend Info: Empty hook `BeforeClearDocument' on input line 62.
|
||||
[44
|
||||
|
||||
<./by-sa.pdf> <./by.pdf> <./sa.pdf>]
|
||||
Package atveryend Info: Empty hook `AfterLastShipout' on input line 62.
|
||||
(./rapport.aux)
|
||||
Package atveryend Info: Executing hook `AtVeryEndDocument' on input line 62.
|
||||
Package atveryend Info: Executing hook `AtEndAfterFileList' on input line 62.
|
||||
Package rerunfilecheck Info: File `rapport.out' has not changed.
|
||||
(rerunfilecheck) Checksum: F82ECEA6D316C71FBF5E2E66BBB9AEB4;2974.
|
||||
Package atveryend Info: Empty hook `AtVeryVeryEnd' on input line 62.
|
||||
)
|
||||
Here is how much of TeX's memory you used:
|
||||
7253 strings out of 493485
|
||||
101848 string characters out of 3143525
|
||||
195500 words of memory out of 3000000
|
||||
10213 multiletter control sequences out of 15000+200000
|
||||
42023 words of font info for 85 fonts, out of 3000000 for 9000
|
||||
957 hyphenation exceptions out of 8191
|
||||
29i,14n,28p,1166b,498s stack positions out of 5000i,500n,10000p,200000b,50000s
|
||||
</usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmbx10.pfb></us
|
||||
r/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmbx12.pfb></usr/shar
|
||||
e/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmcsc10.pfb></usr/share/tex
|
||||
live/texmf-dist/fonts/type1/public/amsfonts/cm/cmex10.pfb></usr/share/texlive/t
|
||||
exmf-dist/fonts/type1/public/amsfonts/cm/cmmi10.pfb></usr/share/texlive/texmf-d
|
||||
ist/fonts/type1/public/amsfonts/cm/cmmi5.pfb></usr/share/texlive/texmf-dist/fon
|
||||
ts/type1/public/amsfonts/cm/cmmi7.pfb></usr/share/texlive/texmf-dist/fonts/type
|
||||
1/public/amsfonts/cm/cmr10.pfb></usr/share/texlive/texmf-dist/fonts/type1/publi
|
||||
c/amsfonts/cm/cmr12.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfo
|
||||
nts/cm/cmr17.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/
|
||||
cmr5.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmr7.pfb
|
||||
></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy10.pfb></usr
|
||||
/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy7.pfb></usr/share/
|
||||
texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmti10.pfb></usr/share/texliv
|
||||
e/texmf-dist/fonts/type1/public/amsfonts/cm/cmti12.pfb></usr/share/texlive/texm
|
||||
f-dist/fonts/type1/public/amsfonts/cm/cmtt10.pfb>
|
||||
Output written on rapport.pdf (45 pages, 2424017 bytes).
|
||||
PDF statistics:
|
||||
624 PDF objects out of 1000 (max. 8388607)
|
||||
533 compressed objects within 6 object streams
|
||||
120 named destinations out of 1000 (max. 500000)
|
||||
381 words of extra memory for PDF output out of 10000 (max. 10000000)
|
||||
|
40
rapport.out
Normal file
40
rapport.out
Normal file
|
@ -0,0 +1,40 @@
|
|||
\BOOKMARK [1][-]{section.1}{Introduction}{}% 1
|
||||
\BOOKMARK [1][-]{section.2}{Courbes param\351triques}{}% 2
|
||||
\BOOKMARK [2][-]{subsection.2.1}{Survol de la m\351thode et utilisation}{section.2}% 3
|
||||
\BOOKMARK [2][-]{subsection.2.2}{Courbe de Nelson-Siegel}{section.2}% 4
|
||||
\BOOKMARK [2][-]{subsection.2.3}{Analyse empirique}{section.2}% 5
|
||||
\BOOKMARK [2][-]{subsection.2.4}{Conclusion}{section.2}% 6
|
||||
\BOOKMARK [1][-]{section.3}{Analyse de composantes principales}{}% 7
|
||||
\BOOKMARK [2][-]{subsection.3.1}{Survol de la m\351thode et utilisation}{section.3}% 8
|
||||
\BOOKMARK [2][-]{subsection.3.2}{Analyse empirique}{section.3}% 9
|
||||
\BOOKMARK [3][-]{subsubsection.3.2.1}{Approche avec covariances}{subsection.3.2}% 10
|
||||
\BOOKMARK [3][-]{subsubsection.3.2.2}{Approche avec corr\351lation}{subsection.3.2}% 11
|
||||
\BOOKMARK [3][-]{subsubsection.3.2.3}{Comparaison des deux approches}{subsection.3.2}% 12
|
||||
\BOOKMARK [3][-]{subsubsection.3.2.4}{Volatilit\351 expliqu\351e par composante \(score\)}{subsection.3.2}% 13
|
||||
\BOOKMARK [2][-]{subsection.3.3}{Conclusion}{section.3}% 14
|
||||
\BOOKMARK [1][-]{section.4}{M\351thode des moments}{}% 15
|
||||
\BOOKMARK [2][-]{subsection.4.1}{Description de la m\351thode}{section.4}% 16
|
||||
\BOOKMARK [2][-]{subsection.4.2}{Mod\350les de taux d'int\351r\352t court-terme}{section.4}% 17
|
||||
\BOOKMARK [2][-]{subsection.4.3}{Discr\351tisation}{section.4}% 18
|
||||
\BOOKMARK [2][-]{subsection.4.4}{Conditions de moments utilis\351s}{section.4}% 19
|
||||
\BOOKMARK [2][-]{subsection.4.5}{Matrice de pond\351ration de Newey-West}{section.4}% 20
|
||||
\BOOKMARK [2][-]{subsection.4.6}{Jacobien des moments}{section.4}% 21
|
||||
\BOOKMARK [2][-]{subsection.4.7}{Statistique de Student \(t\)}{section.4}% 22
|
||||
\BOOKMARK [2][-]{subsection.4.8}{Donn\351es utilis\351es}{section.4}% 23
|
||||
\BOOKMARK [2][-]{subsection.4.9}{Applications}{section.4}% 24
|
||||
\BOOKMARK [2][-]{subsection.4.10}{Conclusion}{section.4}% 25
|
||||
\BOOKMARK [1][-]{section.5}{M\351thode du maximum de vraisemblance}{}% 26
|
||||
\BOOKMARK [2][-]{subsection.5.1}{Description de la m\351thode}{section.5}% 27
|
||||
\BOOKMARK [2][-]{subsection.5.2}{Application au mod\350le de Vasicek}{section.5}% 28
|
||||
\BOOKMARK [2][-]{subsection.5.3}{Application au mod\350le CIR}{section.5}% 29
|
||||
\BOOKMARK [2][-]{subsection.5.4}{Application au mod\350le CIR avec approximation normale}{section.5}% 30
|
||||
\BOOKMARK [2][-]{subsection.5.5}{Analyse empirique}{section.5}% 31
|
||||
\BOOKMARK [2][-]{subsection.5.6}{Conclusion}{section.5}% 32
|
||||
\BOOKMARK [1][-]{section.6}{Bibliographie}{}% 33
|
||||
\BOOKMARK [1][-]{section.7}{Annexes}{}% 34
|
||||
\BOOKMARK [2][-]{subsection.7.1}{Fichier source R pour courbes de Nelson Siegel}{section.7}% 35
|
||||
\BOOKMARK [2][-]{subsection.7.2}{Fichier source R pour PCA}{section.7}% 36
|
||||
\BOOKMARK [2][-]{subsection.7.3}{Fichiers source R pour MMG}{section.7}% 37
|
||||
\BOOKMARK [3][-]{subsubsection.7.3.1}{Fonctions}{subsection.7.3}% 38
|
||||
\BOOKMARK [3][-]{subsubsection.7.3.2}{Fichier d'ex\351cution}{subsection.7.3}% 39
|
||||
\BOOKMARK [2][-]{subsection.7.4}{Fichiers source R pour EMV}{section.7}% 40
|
BIN
rapport.pdf
Executable file
BIN
rapport.pdf
Executable file
Binary file not shown.
62
rapport.tex
Executable file
62
rapport.tex
Executable file
|
@ -0,0 +1,62 @@
|
|||
\documentclass{article}
|
||||
|
||||
\addtolength{\textwidth}{50pt}
|
||||
\addtolength{\evensidemargin}{-50pt}
|
||||
\addtolength{\oddsidemargin}{-50pt} \usepackage[francais]{babel}
|
||||
\usepackage[utf8]{inputenc} \usepackage{ae,aeguill}
|
||||
\usepackage[fleqn]{amsmath} \usepackage{graphicx}
|
||||
\usepackage{hyperref}
|
||||
\usepackage{amsfonts}
|
||||
\usepackage{verbatim}
|
||||
\usepackage{lscape}
|
||||
\usepackage{tabularx}
|
||||
\newcommand{\sumin}{\sum_{i=1}^n}
|
||||
\newcommand{\sumjn}{\sum_{j=1}^n}
|
||||
\newcommand{\nsumin}{\frac{1}{n} \sum_{i=1}^n}
|
||||
\newcommand{\nsumjn}{\frac{1}{n} \sum_{j=1}^n}
|
||||
\newcommand{\sqnsumin}{\frac{1}{sqrt{n}} \sum_{i=1}^n}
|
||||
\newcommand{\sumiNt}{\sum_{i=1}^{N(t)}}
|
||||
\newcommand{\fxt}{f(x;\theta)}
|
||||
\newcommand{\gxt}{g(x;\theta)}
|
||||
\begin{document}
|
||||
|
||||
\input{rapport-titlepage}
|
||||
|
||||
\newpage
|
||||
\tableofcontents
|
||||
|
||||
\newpage
|
||||
|
||||
\section{Introduction}
|
||||
|
||||
\input{introduction}
|
||||
|
||||
\newpage
|
||||
\section{Courbes paramétriques}
|
||||
|
||||
\input{rapport-nelsonsiegel}
|
||||
|
||||
\newpage
|
||||
\section{Analyse de composantes principales}
|
||||
|
||||
\input{rapport-principalcomponent}
|
||||
|
||||
\newpage
|
||||
\section{Méthode des moments}
|
||||
|
||||
\input{rapport-gmm}
|
||||
|
||||
\newpage
|
||||
\section{Méthode du maximum de vraisemblance}
|
||||
|
||||
\input{rapport-mle}
|
||||
\newpage
|
||||
|
||||
\section{Bibliographie}
|
||||
\input{bibliographie}
|
||||
\newpage
|
||||
\input{annexe}
|
||||
\clearpage
|
||||
\input{cc}
|
||||
|
||||
\end{document}
|
47
rapport.toc
Normal file
47
rapport.toc
Normal file
|
@ -0,0 +1,47 @@
|
|||
\select@language {french}
|
||||
\contentsline {section}{\numberline {1}Introduction}{3}{section.1}
|
||||
\contentsline {section}{\numberline {2}Courbes param\IeC {\'e}triques}{4}{section.2}
|
||||
\contentsline {subsection}{\numberline {2.1}Survol de la m\IeC {\'e}thode et utilisation}{4}{subsection.2.1}
|
||||
\contentsline {subsection}{\numberline {2.2}Courbe de Nelson-Siegel}{4}{subsection.2.2}
|
||||
\contentsline {subsection}{\numberline {2.3}Analyse empirique}{5}{subsection.2.3}
|
||||
\contentsline {subsection}{\numberline {2.4}Conclusion}{9}{subsection.2.4}
|
||||
\contentsline {section}{\numberline {3}Analyse de composantes principales}{10}{section.3}
|
||||
\contentsline {subsection}{\numberline {3.1}Survol de la m\IeC {\'e}thode et utilisation}{10}{subsection.3.1}
|
||||
\contentsline {paragraph}{Diff\IeC {\'e}renciation}{10}{section*.2}
|
||||
\contentsline {paragraph}{Matrice de variance-covariance}{10}{section*.3}
|
||||
\contentsline {paragraph}{Valeurs et vecteurs propres}{10}{section*.4}
|
||||
\contentsline {subsection}{\numberline {3.2}Analyse empirique}{11}{subsection.3.2}
|
||||
\contentsline {subsubsection}{\numberline {3.2.1}Approche avec covariances}{12}{subsubsection.3.2.1}
|
||||
\contentsline {subsubsection}{\numberline {3.2.2}Approche avec corr\IeC {\'e}lation}{13}{subsubsection.3.2.2}
|
||||
\contentsline {subsubsection}{\numberline {3.2.3}Comparaison des deux approches}{14}{subsubsection.3.2.3}
|
||||
\contentsline {subsubsection}{\numberline {3.2.4}Volatilit\IeC {\'e} expliqu\IeC {\'e}e par composante (score)}{14}{subsubsection.3.2.4}
|
||||
\contentsline {subsection}{\numberline {3.3}Conclusion}{15}{subsection.3.3}
|
||||
\contentsline {section}{\numberline {4}M\IeC {\'e}thode des moments}{16}{section.4}
|
||||
\contentsline {subsection}{\numberline {4.1}Description de la m\IeC {\'e}thode}{16}{subsection.4.1}
|
||||
\contentsline {subsection}{\numberline {4.2}Mod\IeC {\`e}les de taux d'int\IeC {\'e}r\IeC {\^e}t court-terme}{16}{subsection.4.2}
|
||||
\contentsline {paragraph}{Mod\IeC {\`e}le de Vasicek}{16}{section*.5}
|
||||
\contentsline {paragraph}{Mod\IeC {\`e}le de Cox, Ingersoll et Ross}{17}{section*.6}
|
||||
\contentsline {paragraph}{Mod\IeC {\`e}le de Chan, Karolyi, Longstaff et Sanders}{17}{section*.7}
|
||||
\contentsline {subsection}{\numberline {4.3}Discr\IeC {\'e}tisation}{18}{subsection.4.3}
|
||||
\contentsline {subsection}{\numberline {4.4}Conditions de moments utilis\IeC {\'e}s}{18}{subsection.4.4}
|
||||
\contentsline {subsection}{\numberline {4.5}Matrice de pond\IeC {\'e}ration de Newey-West}{19}{subsection.4.5}
|
||||
\contentsline {subsection}{\numberline {4.6}Jacobien des moments}{21}{subsection.4.6}
|
||||
\contentsline {subsection}{\numberline {4.7}Statistique de Student (t)}{22}{subsection.4.7}
|
||||
\contentsline {subsection}{\numberline {4.8}Donn\IeC {\'e}es utilis\IeC {\'e}es}{23}{subsection.4.8}
|
||||
\contentsline {subsection}{\numberline {4.9}Applications}{24}{subsection.4.9}
|
||||
\contentsline {subsection}{\numberline {4.10}Conclusion}{24}{subsection.4.10}
|
||||
\contentsline {section}{\numberline {5}M\IeC {\'e}thode du maximum de vraisemblance}{25}{section.5}
|
||||
\contentsline {subsection}{\numberline {5.1}Description de la m\IeC {\'e}thode}{25}{subsection.5.1}
|
||||
\contentsline {subsection}{\numberline {5.2}Application au mod\IeC {\`e}le de Vasicek}{25}{subsection.5.2}
|
||||
\contentsline {subsection}{\numberline {5.3}Application au mod\IeC {\`e}le CIR}{26}{subsection.5.3}
|
||||
\contentsline {subsection}{\numberline {5.4}Application au mod\IeC {\`e}le CIR avec approximation normale}{27}{subsection.5.4}
|
||||
\contentsline {subsection}{\numberline {5.5}Analyse empirique}{27}{subsection.5.5}
|
||||
\contentsline {subsection}{\numberline {5.6}Conclusion}{27}{subsection.5.6}
|
||||
\contentsline {section}{\numberline {6}Bibliographie}{28}{section.6}
|
||||
\contentsline {section}{\numberline {7}Annexes}{29}{section.7}
|
||||
\contentsline {subsection}{\numberline {7.1}Fichier source R pour courbes de Nelson Siegel}{29}{subsection.7.1}
|
||||
\contentsline {subsection}{\numberline {7.2}Fichier source R pour PCA}{30}{subsection.7.2}
|
||||
\contentsline {subsection}{\numberline {7.3}Fichiers source R pour MMG}{33}{subsection.7.3}
|
||||
\contentsline {subsubsection}{\numberline {7.3.1}Fonctions}{33}{subsubsection.7.3.1}
|
||||
\contentsline {subsubsection}{\numberline {7.3.2}Fichier d'ex\IeC {\'e}cution}{39}{subsubsection.7.3.2}
|
||||
\contentsline {subsection}{\numberline {7.4}Fichiers source R pour EMV}{41}{subsection.7.4}
|
BIN
sa.pdf
Normal file
BIN
sa.pdf
Normal file
Binary file not shown.
429
serieGMM.pdf
Executable file
429
serieGMM.pdf
Executable file
|
@ -0,0 +1,429 @@
|
|||
%PDF-1.4
|
||||
%<25>â<EFBFBD>ã<EFBFBD>Ï<EFBFBD>Ó\r
|
||||
1 0 obj
|
||||
<<
|
||||
/CreationDate (D:20120412164103)
|
||||
/ModDate (D:20120412164103)
|
||||
/Title (R Graphics Output)
|
||||
/Producer (R 2.13.1)
|
||||
/Creator (R)
|
||||
>>
|
||||
endobj
|
||||
2 0 obj
|
||||
<<
|
||||
/Type /Catalog
|
||||
/Pages 3 0 R
|
||||
>>
|
||||
endobj
|
||||
7 0 obj
|
||||
<<
|
||||
/Type /Page
|
||||
/Parent 3 0 R
|
||||
/Contents 8 0 R
|
||||
/Resources 4 0 R
|
||||
>>
|
||||
endobj
|
||||
8 0 obj
|
||||
<<
|
||||
/Length 9 0 R
|
||||
>>
|
||||
stream
|
||||
1 J 1 j q
|
||||
Q q 59.04 73.44 414.72 371.52 re W n
|
||||
/sRGB CS 0.000 0.000 0.000 SCN
|
||||
0.75 w
|
||||
[] 0 d
|
||||
1 J
|
||||
1 j
|
||||
10.00 M
|
||||
74.40 406.17 m
|
||||
82.24 431.20 l
|
||||
90.07 423.56 l
|
||||
97.91 420.07 l
|
||||
105.75 402.02 l
|
||||
113.58 395.77 l
|
||||
121.42 383.98 l
|
||||
129.26 369.42 l
|
||||
137.09 307.18 l
|
||||
144.93 305.53 l
|
||||
152.77 268.32 l
|
||||
160.60 258.64 l
|
||||
168.44 270.36 l
|
||||
176.28 251.07 l
|
||||
184.11 240.79 l
|
||||
191.95 205.62 l
|
||||
199.79 144.83 l
|
||||
207.62 152.34 l
|
||||
215.46 166.56 l
|
||||
223.30 142.79 l
|
||||
231.13 140.88 l
|
||||
238.97 108.28 l
|
||||
246.81 104.85 l
|
||||
254.64 90.62 l
|
||||
262.48 110.98 l
|
||||
270.32 101.43 l
|
||||
278.16 87.20 l
|
||||
285.99 88.58 l
|
||||
293.83 89.90 l
|
||||
301.67 101.43 l
|
||||
309.50 98.07 l
|
||||
317.34 91.28 l
|
||||
325.18 97.34 l
|
||||
333.01 98.00 l
|
||||
340.85 89.18 l
|
||||
348.69 129.88 l
|
||||
356.52 141.40 l
|
||||
364.36 173.41 l
|
||||
372.20 191.13 l
|
||||
380.03 197.26 l
|
||||
387.87 213.00 l
|
||||
395.71 257.06 l
|
||||
403.54 267.66 l
|
||||
411.38 285.84 l
|
||||
419.22 283.60 l
|
||||
427.05 280.11 l
|
||||
434.89 262.20 l
|
||||
442.73 263.51 l
|
||||
450.56 254.56 l
|
||||
458.40 249.75 l
|
||||
S
|
||||
Q q
|
||||
BT
|
||||
/sRGB cs 0.000 0.000 0.000 scn
|
||||
/F2 1 Tf 12.00 0.00 -0.00 12.00 253.07 18.72 Tm (Time) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 0.00 12.00 -12.00 0.00 12.96 255.53 Tm (rf) Tj
|
||||
ET
|
||||
Q q
|
||||
/sRGB CS 0.000 0.000 0.000 SCN
|
||||
0.75 w
|
||||
[] 0 d
|
||||
1 J
|
||||
1 j
|
||||
10.00 M
|
||||
66.56 73.44 m 458.40 73.44 l S
|
||||
66.56 73.44 m 66.56 66.24 l S
|
||||
144.93 73.44 m 144.93 66.24 l S
|
||||
223.30 73.44 m 223.30 66.24 l S
|
||||
301.67 73.44 m 301.67 66.24 l S
|
||||
380.03 73.44 m 380.03 66.24 l S
|
||||
458.40 73.44 m 458.40 66.24 l S
|
||||
BT
|
||||
/sRGB cs 0.000 0.000 0.000 scn
|
||||
/F2 1 Tf 12.00 0.00 -0.00 12.00 63.23 47.52 Tm (0) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 12.00 0.00 -0.00 12.00 138.26 47.52 Tm (10) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 12.00 0.00 -0.00 12.00 216.63 47.52 Tm (20) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 12.00 0.00 -0.00 12.00 294.99 47.52 Tm (30) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 12.00 0.00 -0.00 12.00 373.36 47.52 Tm (40) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 12.00 0.00 -0.00 12.00 451.73 47.52 Tm (50) Tj
|
||||
ET
|
||||
59.04 90.76 m 59.04 420.07 l S
|
||||
59.04 90.76 m 51.84 90.76 l S
|
||||
59.04 156.62 m 51.84 156.62 l S
|
||||
59.04 222.48 m 51.84 222.48 l S
|
||||
59.04 288.34 m 51.84 288.34 l S
|
||||
59.04 354.21 m 51.84 354.21 l S
|
||||
59.04 420.07 m 51.84 420.07 l S
|
||||
BT
|
||||
/F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 79.08 Tm (0.03) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 144.94 Tm (0.04) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 210.81 Tm (0.05) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 276.67 Tm (0.06) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 342.53 Tm (0.07) Tj
|
||||
ET
|
||||
BT
|
||||
/F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 408.39 Tm (0.08) Tj
|
||||
ET
|
||||
59.04 73.44 m
|
||||
473.76 73.44 l
|
||||
473.76 444.96 l
|
||||
59.04 444.96 l
|
||||
59.04 73.44 l
|
||||
S
|
||||
Q
|
||||
endstream
|
||||
endobj
|
||||
9 0 obj
|
||||
2427
|
||||
endobj
|
||||
3 0 obj
|
||||
<<
|
||||
/Type /Pages
|
||||
/Kids [
|
||||
7 0 R
|
||||
]
|
||||
/Count 1
|
||||
/MediaBox [0 0 504 504]
|
||||
>>
|
||||
endobj
|
||||
4 0 obj
|
||||
<<
|
||||
/ProcSet [/PDF /Text]
|
||||
/Font <</F2 11 0 R >>
|
||||
/ExtGState << >>
|
||||
/ColorSpace << /sRGB 5 0 R >>
|
||||
>>
|
||||
endobj
|
||||
5 0 obj
|
||||
[/ICCBased 6 0 R]
|
||||
endobj
|
||||
6 0 obj
|
||||
<< /N 3 /Alternate /DeviceRGB /Length 9433 /Filter /ASCIIHexDecode >>
|
||||
stream
|
||||
00 00 0c 48 4c 69 6e 6f 02 10 00 00 6d 6e 74 72
|
||||
52 47 42 20 58 59 5a 20 07 ce 00 02 00 09 00 06
|
||||
00 31 00 00 61 63 73 70 4d 53 46 54 00 00 00 00
|
||||
49 45 43 20 73 52 47 42 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 f6 d6 00 01 00 00 00 00 d3 2d
|
||||
48 50 20 20 00 00 00 00 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
|
||||
00 00 00 11 63 70 72 74 00 00 01 50 00 00 00 33
|
||||
64 65 73 63 00 00 01 84 00 00 00 6c 77 74 70 74
|
||||
00 00 01 f0 00 00 00 14 62 6b 70 74 00 00 02 04
|
||||
00 00 00 14 72 58 59 5a 00 00 02 18 00 00 00 14
|
||||
67 58 59 5a 00 00 02 2c 00 00 00 14 62 58 59 5a
|
||||
00 00 02 40 00 00 00 14 64 6d 6e 64 00 00 02 54
|
||||
00 00 00 70 64 6d 64 64 00 00 02 c4 00 00 00 88
|
||||
76 75 65 64 00 00 03 4c 00 00 00 86 76 69 65 77
|
||||
00 00 03 d4 00 00 00 24 6c 75 6d 69 00 00 03 f8
|
||||
00 00 00 14 6d 65 61 73 00 00 04 0c 00 00 00 24
|
||||
74 65 63 68 00 00 04 30 00 00 00 0c 72 54 52 43
|
||||
00 00 04 3c 00 00 08 0c 67 54 52 43 00 00 04 3c
|
||||
00 00 08 0c 62 54 52 43 00 00 04 3c 00 00 08 0c
|
||||
74 65 78 74 00 00 00 00 43 6f 70 79 72 69 67 68
|
||||
74 20 28 63 29 20 31 39 39 38 20 48 65 77 6c 65
|
||||
74 74 2d 50 61 63 6b 61 72 64 20 43 6f 6d 70 61
|
||||
6e 79 00 00 64 65 73 63 00 00 00 00 00 00 00 12
|
||||
73 52 47 42 20 49 45 43 36 31 39 36 36 2d 32 2e
|
||||
31 00 00 00 00 00 00 00 00 00 00 00 12 73 52 47
|
||||
42 20 49 45 43 36 31 39 36 36 2d 32 2e 31 00 00
|
||||
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
|
||||
58 59 5a 20 00 00 00 00 00 00 f3 51 00 01 00 00
|
||||
00 01 16 cc 58 59 5a 20 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 00 00 58 59 5a 20 00 00 00 00
|
||||
00 00 6f a2 00 00 38 f5 00 00 03 90 58 59 5a 20
|
||||
00 00 00 00 00 00 62 99 00 00 b7 85 00 00 18 da
|
||||
58 59 5a 20 00 00 00 00 00 00 24 a0 00 00 0f 84
|
||||
00 00 b6 cf 64 65 73 63 00 00 00 00 00 00 00 16
|
||||
49 45 43 20 68 74 74 70 3a 2f 2f 77 77 77 2e 69
|
||||
65 63 2e 63 68 00 00 00 00 00 00 00 00 00 00 00
|
||||
16 49 45 43 20 68 74 74 70 3a 2f 2f 77 77 77 2e
|
||||
69 65 63 2e 63 68 00 00 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 64 65 73 63 00 00 00 00 00 00 00 2e
|
||||
49 45 43 20 36 31 39 36 36 2d 32 2e 31 20 44 65
|
||||
66 61 75 6c 74 20 52 47 42 20 63 6f 6c 6f 75 72
|
||||
20 73 70 61 63 65 20 2d 20 73 52 47 42 00 00 00
|
||||
00 00 00 00 00 00 00 00 2e 49 45 43 20 36 31 39
|
||||
36 36 2d 32 2e 31 20 44 65 66 61 75 6c 74 20 52
|
||||
47 42 20 63 6f 6c 6f 75 72 20 73 70 61 63 65 20
|
||||
2d 20 73 52 47 42 00 00 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 00 00 00 00 00 00 64 65 73 63
|
||||
00 00 00 00 00 00 00 2c 52 65 66 65 72 65 6e 63
|
||||
65 20 56 69 65 77 69 6e 67 20 43 6f 6e 64 69 74
|
||||
69 6f 6e 20 69 6e 20 49 45 43 36 31 39 36 36 2d
|
||||
32 2e 31 00 00 00 00 00 00 00 00 00 00 00 2c 52
|
||||
65 66 65 72 65 6e 63 65 20 56 69 65 77 69 6e 67
|
||||
20 43 6f 6e 64 69 74 69 6f 6e 20 69 6e 20 49 45
|
||||
43 36 31 39 36 36 2d 32 2e 31 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 76 69 65 77 00 00 00 00 00 13 a4 fe
|
||||
00 14 5f 2e 00 10 cf 14 00 03 ed cc 00 04 13 0b
|
||||
00 03 5c 9e 00 00 00 01 58 59 5a 20 00 00 00 00
|
||||
00 4c 09 56 00 50 00 00 00 57 1f e7 6d 65 61 73
|
||||
00 00 00 00 00 00 00 01 00 00 00 00 00 00 00 00
|
||||
00 00 00 00 00 00 00 00 00 00 02 8f 00 00 00 02
|
||||
73 69 67 20 00 00 00 00 43 52 54 20 63 75 72 76
|
||||
00 00 00 00 00 00 04 00 00 00 00 05 00 0a 00 0f
|
||||
00 14 00 19 00 1e 00 23 00 28 00 2d 00 32 00 37
|
||||
00 3b 00 40 00 45 00 4a 00 4f 00 54 00 59 00 5e
|
||||
00 63 00 68 00 6d 00 72 00 77 00 7c 00 81 00 86
|
||||
00 8b 00 90 00 95 00 9a 00 9f 00 a4 00 a9 00 ae
|
||||
00 b2 00 b7 00 bc 00 c1 00 c6 00 cb 00 d0 00 d5
|
||||
00 db 00 e0 00 e5 00 eb 00 f0 00 f6 00 fb 01 01
|
||||
01 07 01 0d 01 13 01 19 01 1f 01 25 01 2b 01 32
|
||||
01 38 01 3e 01 45 01 4c 01 52 01 59 01 60 01 67
|
||||
01 6e 01 75 01 7c 01 83 01 8b 01 92 01 9a 01 a1
|
||||
01 a9 01 b1 01 b9 01 c1 01 c9 01 d1 01 d9 01 e1
|
||||
01 e9 01 f2 01 fa 02 03 02 0c 02 14 02 1d 02 26
|
||||
02 2f 02 38 02 41 02 4b 02 54 02 5d 02 67 02 71
|
||||
02 7a 02 84 02 8e 02 98 02 a2 02 ac 02 b6 02 c1
|
||||
02 cb 02 d5 02 e0 02 eb 02 f5 03 00 03 0b 03 16
|
||||
03 21 03 2d 03 38 03 43 03 4f 03 5a 03 66 03 72
|
||||
03 7e 03 8a 03 96 03 a2 03 ae 03 ba 03 c7 03 d3
|
||||
03 e0 03 ec 03 f9 04 06 04 13 04 20 04 2d 04 3b
|
||||
04 48 04 55 04 63 04 71 04 7e 04 8c 04 9a 04 a8
|
||||
04 b6 04 c4 04 d3 04 e1 04 f0 04 fe 05 0d 05 1c
|
||||
05 2b 05 3a 05 49 05 58 05 67 05 77 05 86 05 96
|
||||
05 a6 05 b5 05 c5 05 d5 05 e5 05 f6 06 06 06 16
|
||||
06 27 06 37 06 48 06 59 06 6a 06 7b 06 8c 06 9d
|
||||
06 af 06 c0 06 d1 06 e3 06 f5 07 07 07 19 07 2b
|
||||
07 3d 07 4f 07 61 07 74 07 86 07 99 07 ac 07 bf
|
||||
07 d2 07 e5 07 f8 08 0b 08 1f 08 32 08 46 08 5a
|
||||
08 6e 08 82 08 96 08 aa 08 be 08 d2 08 e7 08 fb
|
||||
09 10 09 25 09 3a 09 4f 09 64 09 79 09 8f 09 a4
|
||||
09 ba 09 cf 09 e5 09 fb 0a 11 0a 27 0a 3d 0a 54
|
||||
0a 6a 0a 81 0a 98 0a ae 0a c5 0a dc 0a f3 0b 0b
|
||||
0b 22 0b 39 0b 51 0b 69 0b 80 0b 98 0b b0 0b c8
|
||||
0b e1 0b f9 0c 12 0c 2a 0c 43 0c 5c 0c 75 0c 8e
|
||||
0c a7 0c c0 0c d9 0c f3 0d 0d 0d 26 0d 40 0d 5a
|
||||
0d 74 0d 8e 0d a9 0d c3 0d de 0d f8 0e 13 0e 2e
|
||||
0e 49 0e 64 0e 7f 0e 9b 0e b6 0e d2 0e ee 0f 09
|
||||
0f 25 0f 41 0f 5e 0f 7a 0f 96 0f b3 0f cf 0f ec
|
||||
10 09 10 26 10 43 10 61 10 7e 10 9b 10 b9 10 d7
|
||||
10 f5 11 13 11 31 11 4f 11 6d 11 8c 11 aa 11 c9
|
||||
11 e8 12 07 12 26 12 45 12 64 12 84 12 a3 12 c3
|
||||
12 e3 13 03 13 23 13 43 13 63 13 83 13 a4 13 c5
|
||||
13 e5 14 06 14 27 14 49 14 6a 14 8b 14 ad 14 ce
|
||||
14 f0 15 12 15 34 15 56 15 78 15 9b 15 bd 15 e0
|
||||
16 03 16 26 16 49 16 6c 16 8f 16 b2 16 d6 16 fa
|
||||
17 1d 17 41 17 65 17 89 17 ae 17 d2 17 f7 18 1b
|
||||
18 40 18 65 18 8a 18 af 18 d5 18 fa 19 20 19 45
|
||||
19 6b 19 91 19 b7 19 dd 1a 04 1a 2a 1a 51 1a 77
|
||||
1a 9e 1a c5 1a ec 1b 14 1b 3b 1b 63 1b 8a 1b b2
|
||||
1b da 1c 02 1c 2a 1c 52 1c 7b 1c a3 1c cc 1c f5
|
||||
1d 1e 1d 47 1d 70 1d 99 1d c3 1d ec 1e 16 1e 40
|
||||
1e 6a 1e 94 1e be 1e e9 1f 13 1f 3e 1f 69 1f 94
|
||||
1f bf 1f ea 20 15 20 41 20 6c 20 98 20 c4 20 f0
|
||||
21 1c 21 48 21 75 21 a1 21 ce 21 fb 22 27 22 55
|
||||
22 82 22 af 22 dd 23 0a 23 38 23 66 23 94 23 c2
|
||||
23 f0 24 1f 24 4d 24 7c 24 ab 24 da 25 09 25 38
|
||||
25 68 25 97 25 c7 25 f7 26 27 26 57 26 87 26 b7
|
||||
26 e8 27 18 27 49 27 7a 27 ab 27 dc 28 0d 28 3f
|
||||
28 71 28 a2 28 d4 29 06 29 38 29 6b 29 9d 29 d0
|
||||
2a 02 2a 35 2a 68 2a 9b 2a cf 2b 02 2b 36 2b 69
|
||||
2b 9d 2b d1 2c 05 2c 39 2c 6e 2c a2 2c d7 2d 0c
|
||||
2d 41 2d 76 2d ab 2d e1 2e 16 2e 4c 2e 82 2e b7
|
||||
2e ee 2f 24 2f 5a 2f 91 2f c7 2f fe 30 35 30 6c
|
||||
30 a4 30 db 31 12 31 4a 31 82 31 ba 31 f2 32 2a
|
||||
32 63 32 9b 32 d4 33 0d 33 46 33 7f 33 b8 33 f1
|
||||
34 2b 34 65 34 9e 34 d8 35 13 35 4d 35 87 35 c2
|
||||
35 fd 36 37 36 72 36 ae 36 e9 37 24 37 60 37 9c
|
||||
37 d7 38 14 38 50 38 8c 38 c8 39 05 39 42 39 7f
|
||||
39 bc 39 f9 3a 36 3a 74 3a b2 3a ef 3b 2d 3b 6b
|
||||
3b aa 3b e8 3c 27 3c 65 3c a4 3c e3 3d 22 3d 61
|
||||
3d a1 3d e0 3e 20 3e 60 3e a0 3e e0 3f 21 3f 61
|
||||
3f a2 3f e2 40 23 40 64 40 a6 40 e7 41 29 41 6a
|
||||
41 ac 41 ee 42 30 42 72 42 b5 42 f7 43 3a 43 7d
|
||||
43 c0 44 03 44 47 44 8a 44 ce 45 12 45 55 45 9a
|
||||
45 de 46 22 46 67 46 ab 46 f0 47 35 47 7b 47 c0
|
||||
48 05 48 4b 48 91 48 d7 49 1d 49 63 49 a9 49 f0
|
||||
4a 37 4a 7d 4a c4 4b 0c 4b 53 4b 9a 4b e2 4c 2a
|
||||
4c 72 4c ba 4d 02 4d 4a 4d 93 4d dc 4e 25 4e 6e
|
||||
4e b7 4f 00 4f 49 4f 93 4f dd 50 27 50 71 50 bb
|
||||
51 06 51 50 51 9b 51 e6 52 31 52 7c 52 c7 53 13
|
||||
53 5f 53 aa 53 f6 54 42 54 8f 54 db 55 28 55 75
|
||||
55 c2 56 0f 56 5c 56 a9 56 f7 57 44 57 92 57 e0
|
||||
58 2f 58 7d 58 cb 59 1a 59 69 59 b8 5a 07 5a 56
|
||||
5a a6 5a f5 5b 45 5b 95 5b e5 5c 35 5c 86 5c d6
|
||||
5d 27 5d 78 5d c9 5e 1a 5e 6c 5e bd 5f 0f 5f 61
|
||||
5f b3 60 05 60 57 60 aa 60 fc 61 4f 61 a2 61 f5
|
||||
62 49 62 9c 62 f0 63 43 63 97 63 eb 64 40 64 94
|
||||
64 e9 65 3d 65 92 65 e7 66 3d 66 92 66 e8 67 3d
|
||||
67 93 67 e9 68 3f 68 96 68 ec 69 43 69 9a 69 f1
|
||||
6a 48 6a 9f 6a f7 6b 4f 6b a7 6b ff 6c 57 6c af
|
||||
6d 08 6d 60 6d b9 6e 12 6e 6b 6e c4 6f 1e 6f 78
|
||||
6f d1 70 2b 70 86 70 e0 71 3a 71 95 71 f0 72 4b
|
||||
72 a6 73 01 73 5d 73 b8 74 14 74 70 74 cc 75 28
|
||||
75 85 75 e1 76 3e 76 9b 76 f8 77 56 77 b3 78 11
|
||||
78 6e 78 cc 79 2a 79 89 79 e7 7a 46 7a a5 7b 04
|
||||
7b 63 7b c2 7c 21 7c 81 7c e1 7d 41 7d a1 7e 01
|
||||
7e 62 7e c2 7f 23 7f 84 7f e5 80 47 80 a8 81 0a
|
||||
81 6b 81 cd 82 30 82 92 82 f4 83 57 83 ba 84 1d
|
||||
84 80 84 e3 85 47 85 ab 86 0e 86 72 86 d7 87 3b
|
||||
87 9f 88 04 88 69 88 ce 89 33 89 99 89 fe 8a 64
|
||||
8a ca 8b 30 8b 96 8b fc 8c 63 8c ca 8d 31 8d 98
|
||||
8d ff 8e 66 8e ce 8f 36 8f 9e 90 06 90 6e 90 d6
|
||||
91 3f 91 a8 92 11 92 7a 92 e3 93 4d 93 b6 94 20
|
||||
94 8a 94 f4 95 5f 95 c9 96 34 96 9f 97 0a 97 75
|
||||
97 e0 98 4c 98 b8 99 24 99 90 99 fc 9a 68 9a d5
|
||||
9b 42 9b af 9c 1c 9c 89 9c f7 9d 64 9d d2 9e 40
|
||||
9e ae 9f 1d 9f 8b 9f fa a0 69 a0 d8 a1 47 a1 b6
|
||||
a2 26 a2 96 a3 06 a3 76 a3 e6 a4 56 a4 c7 a5 38
|
||||
a5 a9 a6 1a a6 8b a6 fd a7 6e a7 e0 a8 52 a8 c4
|
||||
a9 37 a9 a9 aa 1c aa 8f ab 02 ab 75 ab e9 ac 5c
|
||||
ac d0 ad 44 ad b8 ae 2d ae a1 af 16 af 8b b0 00
|
||||
b0 75 b0 ea b1 60 b1 d6 b2 4b b2 c2 b3 38 b3 ae
|
||||
b4 25 b4 9c b5 13 b5 8a b6 01 b6 79 b6 f0 b7 68
|
||||
b7 e0 b8 59 b8 d1 b9 4a b9 c2 ba 3b ba b5 bb 2e
|
||||
bb a7 bc 21 bc 9b bd 15 bd 8f be 0a be 84 be ff
|
||||
bf 7a bf f5 c0 70 c0 ec c1 67 c1 e3 c2 5f c2 db
|
||||
c3 58 c3 d4 c4 51 c4 ce c5 4b c5 c8 c6 46 c6 c3
|
||||
c7 41 c7 bf c8 3d c8 bc c9 3a c9 b9 ca 38 ca b7
|
||||
cb 36 cb b6 cc 35 cc b5 cd 35 cd b5 ce 36 ce b6
|
||||
cf 37 cf b8 d0 39 d0 ba d1 3c d1 be d2 3f d2 c1
|
||||
d3 44 d3 c6 d4 49 d4 cb d5 4e d5 d1 d6 55 d6 d8
|
||||
d7 5c d7 e0 d8 64 d8 e8 d9 6c d9 f1 da 76 da fb
|
||||
db 80 dc 05 dc 8a dd 10 dd 96 de 1c de a2 df 29
|
||||
df af e0 36 e0 bd e1 44 e1 cc e2 53 e2 db e3 63
|
||||
e3 eb e4 73 e4 fc e5 84 e6 0d e6 96 e7 1f e7 a9
|
||||
e8 32 e8 bc e9 46 e9 d0 ea 5b ea e5 eb 70 eb fb
|
||||
ec 86 ed 11 ed 9c ee 28 ee b4 ef 40 ef cc f0 58
|
||||
f0 e5 f1 72 f1 ff f2 8c f3 19 f3 a7 f4 34 f4 c2
|
||||
f5 50 f5 de f6 6d f6 fb f7 8a f8 19 f8 a8 f9 38
|
||||
f9 c7 fa 57 fa e7 fb 77 fc 07 fc 98 fd 29 fd ba
|
||||
fe 4b fe dc ff 6d ff ff >
|
||||
endstream
|
||||
endobj
|
||||
10 0 obj
|
||||
<<
|
||||
/Type /Encoding
|
||||
/BaseEncoding /WinAnsiEncoding
|
||||
/Differences [ 45/minus 96/quoteleft
|
||||
144/dotlessi /grave /acute /circumflex /tilde /macron /breve /dotaccent
|
||||
/dieresis /.notdef /ring /cedilla /.notdef /hungarumlaut /ogonek /caron /space]
|
||||
>>
|
||||
endobj
|
||||
11 0 obj <<
|
||||
/Type /Font
|
||||
/Subtype /Type1
|
||||
/Name /F2
|
||||
/BaseFont /Helvetica
|
||||
/Encoding 10 0 R
|
||||
>> endobj
|
||||
xref
|
||||
0 12
|
||||
0000000000 65535 f
|
||||
0000000021 00000 n
|
||||
0000000164 00000 n
|
||||
0000002792 00000 n
|
||||
0000002875 00000 n
|
||||
0000002987 00000 n
|
||||
0000003020 00000 n
|
||||
0000000213 00000 n
|
||||
0000000293 00000 n
|
||||
0000002772 00000 n
|
||||
0000012556 00000 n
|
||||
0000012814 00000 n
|
||||
trailer
|
||||
<<
|
||||
/Size 12
|
||||
/Info 1 0 R
|
||||
/Root 2 0 R
|
||||
>>
|
||||
startxref
|
||||
12912
|
||||
%%EOF
|
2
summaryDonneesGMM.txt
Executable file
2
summaryDonneesGMM.txt
Executable file
|
@ -0,0 +1,2 @@
|
|||
Min. 1st Qu. Median Mean 3rd Qu. Max.
|
||||
0.02946 0.03276 0.04800 0.04930 0.05838 0.08169
|
Loading…
Reference in a new issue